Как 380 вольт переделать на 220 вольт: Как переделать электродвигатель с 380 на 220

Содержание

Как переделать электродвигатель с 380 на 220

Если у вас есть трехфазный электродвигатель, вы знаете, что это недешевое удовольствие. Поэтому при необходимости использовать однофазный мотор, мысль о покупке нового оборудования посетит вас только тогда, когда вы не знаете, как сделать электродвигатель в домашних условиях. Мы расскажем, как переделать электрический двигатель с 380 на 220 Вольт своими руками.

Что можно переделывать

Для переделки подойдут маломощные электродвигатели 380 Вольт: до 3 кВт. Теоритически переподключаются и мощные моторы. Но это дополнительно повлечет за собой установку отдельного автомата в электрощите и проведение специальной проводки. И эти работы теряют смысл, если вдруг обнаруживается, что такую нагрузку не потянет вводной кабель.

Даже если ваша сеть держит высокие нагрузки, и вам удалось переделать двигатель от 3 кВт с 380 на 220 Вольт, вы огорчитесь при первом его пуске в ход. Запуск будет тяжелым. Вы решите, что труд был напрасным. Поэтому если переделывать, то именно маломощные модели.

Этапы переделки

Чтобы переделать электродвигатель с 380 Вольт на 220 сначала откиньте крышку мотора, чтобы посмотреть, сколько снаружи концов у статорных намоток. Их может быть 6 или 3. Если 6, то есть возможность поменять схему соединения: если была «звезда», можно перейти на «треугольник», и наоборот.

Если конца всего 3, значит, внутри короба намотки уже соединяются либо «звездой», либо «треугольником» (всего 6 концов, которые попарно объединяются клеммами, их и будет 3, так как на каждую клемму – 2 конца). В таком случае придется оставить прежнюю схему.

Внимание! Если вы решили поменять схему соединения статорных обмоток с тремя концами снаружи, то придется своими руками вскрыть корпус мотора. Это трудоемко, но возможно.

Соединение обмоток

Неважно, каков источник питания, трехфазный или однофазный, соединять статорные намотки можно любым из способов (можете прочитать подробнее про способы подключения электродвигателей):

  • Звезда;
  • Треугольник.

Звездой обычно соединяют намотки, если двигатель будет питаться от сети 380 В. Благодаря этому пуск становится плавным, хотя теряется треть мощности. Треугольник же рекомендуется при запитывании от 220 Вольт. Пусковые токи при этом не так высоки по сравнению с теми, что возникают от трехфазного питания. Зато мощность равна той, что дает «звездное» соединение, если мотор подключен к 380 В.

Схемы посмотрите ниже. Разница в том, что в первом случае соединяются все начала так, что получается трехконечная звезда. А во втором – конец одной обмотки соединяется с началом следующей так, что образуется фигура с тремя вершинами (треугольник).

Расчет конденсаторов

Когда концы намоток соединяют звездой или треугольником, образуется 3 места, где они стыкуются. На этих местах ставят клеммы. При питании от 380 Вольт на каждую из них подают фазу. Но наша задача, имея те же 3 контакта, подать лишь 1 фазу 220 Вольт и нуль. Это можно реализовать своими руками, компенсировав отсутствие трехфазного питания конденсаторами. Пусковой будет активным только на время запуска, а рабочий – постоянно.

Чтобы электрический двигатель хорошо запускался и работал, нужно правильно подобрать емкость конденсаторов. У рабочего накопителя она зависит от схемы соединения. Если это звезда, то работает формула:

Если треугольник, то формула преобразует свой вид:

Ср – искомая емкость рабочего накопительного элемента. U – напряжение в сети (220 Вольт). I – сила тока, которую находят по формуле:

Р – мощность, U – уже известное нам напряжение, ƞ – КПД, косинус «фи» — коэффициент мощности. Все эти значения можно посмотреть в техническом паспорте от вашего трехфазного мотора.

Расчет емкости пускового конденсатора (Сп) прост: умножьте Ср на 1,5 или 2. Если Ср=50 мкФ, то Сп будет от 75 до 100 мкФ. Поочередно ставьте то одну емкость, то другую, запуская каждый раз мотор. По звуку хода слушайте: если нет гула, то все в порядке.

Внимание! Конденсаторы обязательно должны быть бумажными. Для переделки двигателя своими руками хорошо идут МБГП или МБГО. Если не нашли накопителя нужной емкости, то соедините несколько штук параллельно.

Сборка по схеме

Схема выше показывает, как правильно соединить своими руками намотки статора с конденсаторами и проводами сети 220 В.  К одной из вершин треугольника или звезды нужно подключить накопительные элементы параллельно друг другу (предусмотрите ключ для ручного отключения пускового накопителя после разгона). Затем их выводят либо на фазу, либо на ноль: неважно. От этого будет зависеть только направление вращения вала.

Как поменять направление вращения

Если поменять направление нужно только 1 раз, то это можно сделать еще на стадии переделки. Для этого достаточно поменять местами любые две обмотки статора. Той же цели достигает перекидывание ветки конденсаторов с нуля на фазу, или наоборот. Но если вам нужно часто реверсировать трехфазный переделанный мотор, необходим переключатель. Собрав электродвигатель по схеме ниже, вы освободите себя от смены намоток каждый раз, когда нужно задать обратное направление вращения вала.

В переделке трехфазного электрического двигателя под однофазную сеть своими руками нет ничего трудного. Наибольшую сложность составит только расчет емкости рабочего конденсатора и экспериментальный подбор емкости из подсчитанного диапазона для пускового накопителя. Но и это становится легко, если вы не потеряли технический паспорт, а под рукой есть калькулятор.

Ещё по теме:
— Схемы подключения асинхронного и синхронного однофазных двигателей
— Схемы подключения электродвигателя через конденсаторы
— Реверсивная схема подключения электродвигателя
— Плавный пуск электродвигателя своими руками
—В чем разница асинхронного и синхронного двигателей
— Реверсивное подключение однофазного асинхронного двигателя своими руками
— Как проверить электродвигатель
— Ремонт электродвигателей

Страница не найдена ⋆ Электрик Дома

Электродвигатели

Отказ электродвигателя может возникнуть при пуске или во время работы. Большинство отказов происходит из-за

Видео электрика

В данном уроке автор подробно показывает и рассказывает о способе подключения простой светодиодной ленты

Электропроводка и соединения

Было бы нерационально делать замену старой проводки без сопутствующего капитального ремонта, особенно если речь

Как это устроено

Устройство плавного пуска электродвигателя (сокращенно УПП) – это механизм, используемый для сдерживания роста пусковых

Электропроводка и соединения

Казалось бы, бери любой провод и проводи электричество в дом. Но нет. Выбор кабеля

Своими руками

Варочная панель – весьма интересное достижение науки и техники, которое позволяет экономить пространство кухни

Электродвигатели

Как разработать двигательную установку? Для проектирования системы любого типа имеет значение кинематическая схема и

Как это устроено

Само словосочетание «короткое замыкание» предполагает что-то чрезвычайно нехорошее и опасное. Оно может спровоцировать сильнейший

Видео электрика

Если возникла необходимость отремонтировать имеющуюся розетку, или ее нужно просто перенести, то этот видео

Видео электрика

Во многих домах уже установлены теплые полы. В большинстве своем это электрические модели. Одной

Бытовые электроприборы

Чем дальше вы живете от трансформаторной подстанции, тем меньший вольтаж можно замерить в розетках

Электродвигатели

Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные

Как это устроено

Стабилизатор напряжения – это устройство, к входу которого подается напряжение с неустойчивыми или неподходящими

Как это устроено

С тех пор, как научились добывать и пользоваться электричеством, люди перестали задаваться вопросом как

Своими руками

Стабилизатор – устройство, которое установлено во многих домах и предназначено для поддержания стабильного напряжения

Своими руками

Установка или ремонт розетки своими руками считается одним из самых востребованных домашних дел, которое

Электропроводка и соединения

Жизнь современного человека немыслима без многочисленных электроприборов, окружающих его на производстве, в общественных местах

Своими руками

Чем старше ваша люстра, тем выше риск ее поломки. Покупка нового осветительного оборудования часто

Своими руками

Установка электрического счетчика обязательна для всех. У вас только остается выбор: подключение электросчетчика своими

Бытовые электроприборы

В связи с нарастающей популярностью инфракрасных обогревателей возникает вопрос: а так ли они безопасны,

Страница не найдена ⋆ Электрик Дома

Своими руками

Центральное отопление осенью начинает действовать поздно, в то время как весной оно рано отключается.

Как это устроено

Задача снижения количества потребляемой энергии перестала быть только технической проблемой и перешла в область

Электропроводка и соединения

Внезапное отключение электроэнергии в современном жилище? Это настоящая катастрофа. Электрические плиты для приготовления еды,

Электропроводка и соединения

Выбор электросчетчика – ответственное мероприятие, потому что, купив устройство, вернуть его назад со словами

Светодиодные ленты

Сегодня разберёмся что такое ШИМ и с чем его едят, а также как сделать

Электропроводка и соединения

Электрическая безопасность – один из главных постулатов домашней электрической сети, за соблюдением которого необходимо

Альтернативные источники энергии

Централизованное обеспечение электрической энергии дает сбои, которые причиняют неудобства жильцам населенных пунктов. А к

Бытовые электроприборы

Рост стоимости энергии – такова неизбежность нашего времени. Чтобы привлечь потребителей, розничные и коммерческие

Бытовые электроприборы

Кухонная техника развивается все более стремительно – появляются современная техника, при помощи которой значительно

Своими руками

Чем старше ваша люстра, тем выше риск ее поломки. Покупка нового осветительного оборудования часто

Своими руками

Для вывода птичьего молодняка необходимо постоянное поддержание определенного микроклимата. Если даже на короткое время

Бытовые электроприборы

Для каждого вида ламп предусмотрена средняя продолжительность работы. Для лампочек Ильича срок службы составляет

Как это устроено

Устройство плавного пуска электродвигателя (сокращенно УПП) – это механизм, используемый для сдерживания роста пусковых

Электродвигатели

Если у вас есть трехфазный электродвигатель, вы знаете, что это недешевое удовольствие. Поэтому при

Электродвигатели

Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные

Своими руками

На первый взгляд в наше время, даже дети знают, что такое электричество, как с

Своими руками

В электрике принято обозначать провода различными цветами. Это существенно облегчает монтаж, а также дальнейшую

Электродвигатели

С момента изобретения асинхронного двигателя появились различные вариации его исполнения. Но способы подключения остались

Своими руками

Бытовая техника восприимчива к перепадам напряжения: она быстрее изнашивается и выходит из строя. А

Электродвигатели

Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного

Страница не найдена ⋆ Электрик Дома

Своими руками

Варочная панель – весьма интересное достижение науки и техники, которое позволяет экономить пространство кухни

Как это устроено

Устройство плавного пуска электродвигателя (сокращенно УПП) – это механизм, используемый для сдерживания роста пусковых

Электропроводка и соединения

Раз в месяц каждая семья оплачивает расходы электроэнергии, и оплата за 1 кВт*час меняется

Электропроводка и соединения

Выбор электросчетчика – ответственное мероприятие, потому что, купив устройство, вернуть его назад со словами

Бытовые электроприборы

Розетки есть в каждом доме: с их помощью подключают электрические приборы в сеть. Они

Видео электрика

Автор с ником МИР ПРИВОДА делится наглядным пособием по подключению трехфазного электродвигателя способами звездой. В качестве

Бытовые электроприборы

Велико было наше недоумение, да отчасти и возмущение, когда привычные дешевые лампы накаливания стали

Бытовые электроприборы

Мультиметр, – измерительный прибор, фиксирующий значения параметры электроцепи. Устройства применяют электрики, монтажники и ремонтники

Бытовые электроприборы

Чем дальше находится населенный пункт от электростанции, тем менее устойчивым доходит ток до потребителя.

Электродвигатели

Существуют требования, которым должен отвечать запуск асинхронного двигателя. Во-первых, это отсутствие необходимости в использовании

Электропроводка и соединения

Желательно проведение электрического кабеля в дом доверить профессионалу: от точности соблюдения норм и качества

Электропроводка и соединения

В XX веке все электросчетчики считали потребляемую энергию единственным образом. Сегодня появились счетные устройства,

Бытовые электроприборы

Одну часть электрических приборов включают на время, другую – оставляют подключенной к сети всегда.

Электродвигатели

С момента изобретения асинхронного двигателя появились различные вариации его исполнения. Но способы подключения остались

Своими руками

Стабилизатор – устройство, которое установлено во многих домах и предназначено для поддержания стабильного напряжения

Своими руками

Светодиодная лента – относительно недавно появившееся светотехническое устройство, которое можно применять для создания особых

Альтернативные источники энергии

Централизованное обеспечение электрической энергии дает сбои, которые причиняют неудобства жильцам населенных пунктов. А к

Бытовые электроприборы

Чем дальше вы живете от трансформаторной подстанции, тем меньший вольтаж можно замерить в розетках

Своими руками

Установка или ремонт розетки своими руками считается одним из самых востребованных домашних дел, которое

Электродвигатели

Асинхронные двигатели получили широкое применение, потому что они малошумны и легки в эксплуатации. Особенно

Как подключить электродвигатель с 380 на 220: способы и схемы

Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.

Общие правила

Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.

Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:

  1. 660/380 В;
  2. 380/220 В;
  3. 220/127 В.

Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.

Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой,  будут иметь плавный пуск, а треугольник сможет выдать большую мощность.

Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.

Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.

Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.

Способы и схемы подключения

В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.

Без конденсаторов

Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете  избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.

Схема бесконденсаторного пуска треугольник

Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.

Работа схемы производится следующим образом:

  • при подаче напряжения на ввод провода подключаются к двум точкам мотора;
  •  напряжение на третью точку треугольника подается через времязадающую R-C  цепочку;
  • магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
  • после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.

Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:

Схема бесконденсаторного пуска звезда

С конденсаторами

Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий.  Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.

Схема включения с конденсаторами

Как видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками,  а к третей та же фаза подключается через  контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.

Включение асинхронного электродвигателя происходит по такому принципу:

  • Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
  • После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор  C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
  • Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.

Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.

С реверсом

Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.

Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:

Включение трехфазного двигателя с реверсом

Как видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.

Используя пускатель

Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.

Схема включения через магнитный пускатель

Как видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор Спуск.  При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.

Как подбирать конденсаторы?

Если вы собрались подключить электродвигатель, то выбор  конденсатора осуществляется по таким принципам:

  • Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
  • Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
  • Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:

Таблица: определение емкости конденсаторов

Мощность трехфазного электродвигателя, кВт0,40,60,81,11,52,2
Минимальная емкость конденсатора Ср , мкф406080100150230
Емкость пускового конденсатора (Сп), мкф80120160200250300

Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.

Видео в помощь

Переделка двигателя с 380 на 220

Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.

Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.

При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».

Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.

Переподключение с 380 вольт на 220

Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).

Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.

От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.

Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.

Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.

Видео: Как подключить электродвигатель с 380 на 220

Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.

Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.

Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.

Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.

Схема звезда-треугольник

В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.

Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.

Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.

Чтобы она работала необходимо три пускателя:

К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.

Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».

Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.

Как работает схема

При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.

Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.

Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.

Другие подключения электродвигателя

Схем несколько:

  1. Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
  2. Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
  3. При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.

Рекомендуем:

Включение трехфазного двигателя в однофазную сеть

Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.

Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.

Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.

Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.

Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).

Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.

Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.

Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.

Использование магнитного пускателя

Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.

Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.

Схема подключения пускателя асинхронного двигателя электрического 380в:

На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.

Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.

Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.

Видео: Подключение асинхронного двигателя. Определение типа двигателя.

Если у вас есть трехфазный электродвигатель, вы знаете, что это недешевое удовольствие. Поэтому при необходимости использовать однофазный мотор, мысль о покупке нового оборудования посетит вас только тогда, когда вы не знаете, как сделать электродвигатель в домашних условиях. Мы расскажем, как переделать электрический двигатель с 380 на 220 Вольт своими руками.

Что можно переделывать

Для переделки подойдут маломощные электродвигатели 380 Вольт: до 3 кВт. Теоритически переподключаются и мощные моторы. Но это дополнительно повлечет за собой установку отдельного автомата в электрощите и проведение специальной проводки. И эти работы теряют смысл, если вдруг обнаруживается, что такую нагрузку не потянет вводной кабель.

Даже если ваша сеть держит высокие нагрузки, и вам удалось переделать двигатель от 3 кВт с 380 на 220 Вольт, вы огорчитесь при первом его пуске в ход. Запуск будет тяжелым. Вы решите, что труд был напрасным. Поэтому если переделывать, то именно маломощные модели.

Этапы переделки

Чтобы переделать электродвигатель с 380 Вольт на 220 сначала откиньте крышку мотора, чтобы посмотреть, сколько снаружи концов у статорных намоток. Их может быть 6 или 3. Если 6, то есть возможность поменять схему соединения: если была «звезда», можно перейти на «треугольник», и наоборот.

Если конца всего 3, значит, внутри короба намотки уже соединяются либо «звездой», либо «треугольником» (всего 6 концов, которые попарно объединяются клеммами, их и будет 3, так как на каждую клемму – 2 конца). В таком случае придется оставить прежнюю схему.

Внимание! Если вы решили поменять схему соединения статорных обмоток с тремя концами снаружи, то придется своими руками вскрыть корпус мотора. Это трудоемко, но возможно.

Соединение обмоток

Неважно, каков источник питания, трехфазный или однофазный, соединять статорные намотки можно любым из способов (можете прочитать подробнее про способы подключения электродвигателей):

Звездой обычно соединяют намотки, если двигатель будет питаться от сети 380 В. Благодаря этому пуск становится плавным, хотя теряется треть мощности. Треугольник же рекомендуется при запитывании от 220 Вольт. Пусковые токи при этом не так высоки по сравнению с теми, что возникают от трехфазного питания. Зато мощность равна той, что дает «звездное» соединение, если мотор подключен к 380 В.

Схемы посмотрите ниже. Разница в том, что в первом случае соединяются все начала так, что получается трехконечная звезда. А во втором – конец одной обмотки соединяется с началом следующей так, что образуется фигура с тремя вершинами (треугольник).

Расчет конденсаторов

Когда концы намоток соединяют звездой или треугольником, образуется 3 места, где они стыкуются. На этих местах ставят клеммы. При питании от 380 Вольт на каждую из них подают фазу. Но наша задача, имея те же 3 контакта, подать лишь 1 фазу 220 Вольт и нуль. Это можно реализовать своими руками, компенсировав отсутствие трехфазного питания конденсаторами. Пусковой будет активным только на время запуска, а рабочий – постоянно.

Чтобы электрический двигатель хорошо запускался и работал, нужно правильно подобрать емкость конденсаторов. У рабочего накопителя она зависит от схемы соединения. Если это звезда, то работает формула:

Если треугольник, то формула преобразует свой вид:

Ср – искомая емкость рабочего накопительного элемента. U – напряжение в сети (220 Вольт). I – сила тока, которую находят по формуле:

Р – мощность, U – уже известное нам напряжение, ƞ – КПД, косинус «фи» — коэффициент мощности. Все эти значения можно посмотреть в техническом паспорте от вашего трехфазного мотора.

Расчет емкости пускового конденсатора (Сп) прост: умножьте Ср на 1,5 или 2. Если Ср=50 мкФ, то Сп будет от 75 до 100 мкФ. Поочередно ставьте то одну емкость, то другую, запуская каждый раз мотор. По звуку хода слушайте: если нет гула, то все в порядке.

Внимание! Конденсаторы обязательно должны быть бумажными. Для переделки двигателя своими руками хорошо идут МБГП или МБГО. Если не нашли накопителя нужной емкости, то соедините несколько штук параллельно.

Сборка по схеме

Схема выше показывает, как правильно соединить своими руками намотки статора с конденсаторами и проводами сети 220 В. К одной из вершин треугольника или звезды нужно подключить накопительные элементы параллельно друг другу (предусмотрите ключ для ручного отключения пускового накопителя после разгона). Затем их выводят либо на фазу, либо на ноль: неважно. От этого будет зависеть только направление вращения вала.

Как поменять направление вращения

Если поменять направление нужно только 1 раз, то это можно сделать еще на стадии переделки. Для этого достаточно поменять местами любые две обмотки статора. Той же цели достигает перекидывание ветки конденсаторов с нуля на фазу, или наоборот. Но если вам нужно часто реверсировать трехфазный переделанный мотор, необходим переключатель. Собрав электродвигатель по схеме ниже, вы освободите себя от смены намоток каждый раз, когда нужно задать обратное направление вращения вала.

В переделке трехфазного электрического двигателя под однофазную сеть своими руками нет ничего трудного. Наибольшую сложность составит только расчет емкости рабочего конденсатора и экспериментальный подбор емкости из подсчитанного диапазона для пускового накопителя. Но и это становится легко, если вы не потеряли технический паспорт, а под рукой есть калькулятор.

При эксплуатации или изготовлении того или иного оборудования нередко возникает необходимость подключения асинхронного трехфазного двигателя к обычной сети 220 В. Сделать это вполне реально и даже не особо сложно, главное — найти выход из следующих возможных ситуаций, если нет подходящего однофазного мотора, а трехфазный лежит без дела, а также если имеется трехфазное оборудование, но в мастерской лишь однофазная сеть.

Схемы подключения к сети

Для начала имеет смысл вспомнить схему подключения трехфазного двигателя к трехфазной сети.

Схема подключения трехфазного электродвигателя на 220 В по схеме «Звезда» и «Треугольник»

Для простоты восприятия магнитный пускатель и прочие узлы коммутации не изображены. Как видно из схемы, каждая обмотка мотора питается от своей фазы. В однофазной же сети, как следует из ее названия, «фаза» всего одна. Но и ее достаточно для питания трехфазного электромотора. Взглянем на асинхронный двигатель, подключенный на 220 В.

Как подключить трехфазный электродвигатель 380 В на 220 В через конденсатор по схеме «Звезда» и «Треугольник»: схема.

Здесь одна обмотка трехфазного электромотора напрямую включена в сеть, две остальные соединены последовательно, а на точку их соединения подается напряжение через фазосдвигающий конденсатор С1. С2 является пусковым и включается кнопкой В1 с самовозвратом только в момент пуска: как только двигатель запустится, ее нужно отпустить.

Сразу возникает несколько вопросов:

  1. Насколько такая схема эффективна?
  2. Как обеспечить реверс двигателя?
  3. Какие емкости должны иметь конденсаторы?

Реверсирование двигателя

Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток В и С (соединение «Треугольник») или на обмотку В (схема «Звезда»). Схема же, позволяющая изменять направление вращения ротора простым щелчком переключателя SB2, будет выглядеть следующим образом.

Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети

Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском. Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером SВ1 и лишь затем подать на схему напряжение и кратковременно нажать на кнопку В1.

Емкости фазосдвигающего и пускового конденсаторов

Для подсчета емкости фазосдвигающего конденсатора нужно воспользоваться несложной формулой:

  • С1 = 2800/(I/U) — для включения по схеме «Звезда»;
  • С1 = 4800/(I/U) — для включения по схеме «Треугольник».

Здесь:

  • С1 — емкость фазосдвигающего конденсатора, мкФ;
  • I — номинальный ток одной обмотки двигателя, А;
  • U — напряжение однофазной сети, В.

Но что делать, если номинальный ток обмоток неизвестен? Его можно легко рассчитать, зная мощность мотора, которая обычно нанесена на шильдик устройства. Для расчета воспользуемся формулой:

I = P/1,73*U*n*cosф, где:

  • I — потребляемый ток, А;
  • U — напряжение сети, В;
  • n — КПД;
  • cosф — коэффициент мощности.

Символом * обозначен знак умножения.

Емкость пускового конденсатора С2 выбирается в 1,5−2 раза больше емкости фазосдвигающего.

Рассчитывая фазосдвигающий конденсатор, нужно иметь в виду, что двигатель, работающий не в полную нагрузку, при расчетной емкости конденсатора может греться. В этом случае номинал его нужно уменьшить.

Эффективность работы

К сожалению, трехфазный двигатель при питании одной фазой развить свою номинальную мощность не сможет. Почему? В обычном режиме каждая из обмоток двигателя развивает мощность в 33,3%. При включении мотора, к примеру, «треугольником» лишь одна обмотка С работает в штатном режиме, а в точке соединения обмоток В и С при правильно подобранном конденсаторе напряжение будет в 2 раза ниже питающего, а значит, мощность этих обмоток упадет в 4 раза — всего 8,325% каждая. Произведем несложный подсчет и рассчитаем общую мощность:

33,3 + 8,325 + 8,325 = 49.95%.

Итак, даже теоретически трехфазный двигатель, включенный в однофазную сеть, развивает лишь половину своей паспортной мощности, а на практике эта цифра еще меньше.

Способ повысить развиваемую мотором мощность

Оказывается, повысить мощность мотора можно, и притом существенно. Для этого даже не придется усложнять конструкцию, а достаточно лишь подключить трехфазный двигатель по приведенной ниже схеме.

Асинхронный двигатель — подключение на 220 В по улучшенной схеме

Здесь уже обмотки A и B работают в номинальном режиме, и лишь обмотка C отдает четверть мощности:

33,3 + 33,3 + 8,325 = 74.92%.

Совсем неплохо, не правда ли? Единственное условие при таком включении — обмотки A и B должны быть включены противофазно (отмечено точками). Реверсирование же такой схемы производится обычным образом — переключением полярности цепи конденсатор-обмотка C.

И последнее замечание. На месте фазосдвигающего и пускового конденсатора могут работать лишь бумажные неполярные приборы, к примеру, МБГЧ, выдерживающие напряжение в полтора-два раза выше напряжения питающей сети.

Как подключить электродвигатель 380В на 220В

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Читайте также:

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Читайте также:

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Читайте также:

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

Конденсатор

— Как я могу заставить мой двигатель 380/380 вольт работать от 220 вольт?

Подключение конденсатора к трехфазному двигателю для однофазной работы называется подключением Штейнмеца. Если вы выполните поиск «Steinmetz connection», вы найдете довольно много информации об этом.

Если двигатель имеет только шесть выводов или клемм для внешних подключений, он может работать только при напряжении 380 В на любой из двух указанных скоростей. Для низкой скорости U4, V4 и W4 соединены вместе, а трехфазное питание подключено к U2, V2 и W2.Для высокоскоростной работы нет подключения к U2, T2 и W2, а питание подключается к Uw, T4 и W4. Номинальная механическая мощность одинакова для обеих скоростей, поэтому крутящий момент, доступный на высокой скорости, составляет половину крутящего момента на низкой скорости. Вы можете использовать частотно-регулируемый привод (VFD) с выходом 380 В для любого из этих подключений.

Если на каждом конце каждой обмотки имеется независимое внешнее соединение, 12 выводов или клемм, обмотки могут быть соединены в параллельном треугольнике.Это должно подходить для трехфазного питания 220 вольт. Я считаю, что это все еще будет 4-полюсная низкоскоростная конфигурация. Вы можете использовать VFD с выходом 220 вольт для этого соединения.

У вас не должно возникнуть проблем с поиском частотно-регулируемого привода с однофазным входом 220 вольт и трехфазным выходом 220 вольт. Возможно, вам удастся найти частотно-регулируемый привод со встроенной схемой повышения напряжения, обеспечивающий трехфазный выход 380 вольт и однофазный вход 220 вольт. В противном случае вам понадобится входной трансформатор для VFD и VFD на 380 В, который принимает однофазный вход.

Я не знаю, какие есть варианты с подключением Steinmetz.

Если у существующего двигателя нет специального вала или редуктора, установленного непосредственно на нем. Лучшим вариантом может быть покупка другого двигателя и, возможно, частотно-регулируемого привода для регулирования скорости.

См. Схему ниже:

Для U2, V2 и W2 две катушки двигателя соединены вместе внутри двигателя или в клеммной коробке двигателя. Если вы можете разорвать это соединение, вы можете повторно подключить катушки, как показано красными линиями.Я почти уверен, что это позволит двигателю работать на высокой скорости на 220 вольт. Для однофазной сети подключите конденсатор от одной из линий питания к точке, где должна быть подключена недостающая фаза. Это позволяет двигателю работать от однофазного тока, но его крутящий момент значительно снижается. Это связь Стейнмеца. Вы сможете найти значения конденсаторов и другую информацию, выполнив поиск «Steinmetz connection».

Напряжение

— Как подключить настольную шлифовальную машину 380 В / 3 фазы для работы от однофазной 220 В Напряжение

— Как подключить настольную шлифовальную машину 380 В / 3 фазы для работы на однофазной 220 В — Обмен электротехнического стека

Сеть обмена стеками

Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange

  1. 0

  2. +0

  3. Авторизоваться
    Зарегистрироваться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено
3к раз

\ $ \ begingroup \ $

На этот вопрос уже есть ответы здесь :

Закрыт 3 года назад.

Приобрел старую заводскую шлифовальную машину. Это 3-фазный блок на 380/220 Гц, 50 Гц. Может кто-нибудь объяснить, как подключить это к однофазной сети 220 В (бытовая сеть)?

Я попытался просто подключить синий и коричневый провода к розетке 220 В и крутить блок вручную, но это не сработало. Я слышу, как двигатель набирает обороты, но он не раскручивается.

Щелкните изображение, чтобы просмотреть его в полный размер.

Транзистор

142k1010 золотых знаков153153 серебряных знака324324 бронзовых знака

Создан 27 окт.

Дэйв Дэйв

111 серебряный знак11 бронзовый знак

\ $ \ endgroup \ $

4

\ $ \ begingroup \ $

Как подключить настольную шлифовальную машину 380 В / 3 фазы для работы от однофазной сети 220 В

Нет.

Устройство, предназначенное для работы от трех отдельных фаз, каждая из которых разнесена на 120 °, вряд ли будет работать с одной фазой. Даже если это вообще возможно, попытка «преобразовать» его потребует глубоких знаний устройства и навыков электротехники экспертного уровня. Суть вашего вопроса предполагает, что у вас нет ни того, ни другого.

Создан 27 окт.

Олин Латроп

3,151 11 золотой знак 33 серебряных знака 1312 бронзовых знаков

\ $ \ endgroup \ $

1

Не тот ответ, который вы ищете? Посмотрите другие вопросы с метками напряжение или задайте свой вопрос.

Электротехнический стек Exchange лучше всего работает с включенным JavaScript

Ваша конфиденциальность

Нажимая «Принять все файлы cookie», вы соглашаетесь, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в ​​отношении файлов cookie.

Принимать все файлы cookie

Настроить параметры

Подключение двигателя звезда / треугольник 380В / 220В | GoHz.com

Если двигатель спроектирован для работы по схеме звезды от трехфазного источника питания 380 В, то он не может быть подключен по схеме треугольника к «тому же» источнику питания.Это было бы эквивалентно приложению 380 вольт к обмоткам 220 в, так что двигатель явно выйдет из строя.

Обратите внимание, что в схеме «звезда» каждая обмотка получает корень 3 от приложенного напряжения (или 380 / 1,732). Соединение по схеме «треугольник» означает, что каждая обмотка получает напряжение фаза-фаза EG 380 В.

Если двигатель рассчитан на 380 В — «соединение треугольником», то он может быть подключен звездой или треугольником, поскольку подключение двигателя с номиналом 380 В, треугольник, звездой снизит напряжение на обмотках до 220 В, что является нормальным и часто используется в схеме «звезда /». Пуск по схеме «треугольник» для уменьшения пускового тока.Разумеется, все 6 обмоток двигателя должны быть доступны.

Как указано выше, вы можете взять двигатель 380 В, 3-фазный, соединенный звездой, и запустить его как двигатель 220 В, соединенный трехфазным соединением треугольником. Возвращаясь к основам, это ток, управляемый напряжением, который создает магнитный поток. Плотность потока (зависит от многих факторов) является функцией тока и напряжения. Ток контролируется импедансом цепи и нагрузкой на двигатель. Поскольку большая часть изоляции, используемой в двигателях, рассчитана на 1000 В плюс, напряжение не является проблемой, пока импеданс не станет достаточно низким, чтобы превысить ограничение тока на проводниках до точки, где температура разрушит изоляцию.Мы подключили 380 В к 525 В и наоборот в аварийной ситуации. КПД и коэффициент мощности НЕ будут соответствовать проектным, и вы должны это понимать. Настроить защиту сложно, и безопасность прежде всего, пожалуйста.

Таким образом, вы можете подавать любое напряжение на двигатель, если оно не превышает уровень изоляции и ограничения по току этого конкретного двигателя.

В заключение есть однофазные входы для трехфазных частотно-регулируемых приводов (VFD). Очень часто я получаю запрос, что они не могут разогнать двигатель до полной нагрузки без превышения данных, указанных на паспортной табличке.Небольшие двигатели, для которых были разработаны эти частотно-регулируемые приводы, обычно соединяются звездой. Поскольку частотно-регулируемый привод не может генерировать шину постоянного тока выше пикового напряжения на входе, вы никогда не сможете получить 380 В на входе 220 В. Таким образом, ЧРП выдает три фазы 220В. Двигатель должен быть подключен по схеме треугольника для работы с полной нагрузкой / мощностью.

Преимущество 380 Вольт (по сравнению с 220 Вольт)?

 Разница в большей степени связана с локальной проводкой, чем с производительностью
прибора.В США стандартные (бытовые) розетки имеют одну (горячую) фазу и нейтраль,
подача 110В. Для промышленного применения, особенно для больших
асинхронные двигатели, используется трехфазная розетка (подача 280В между фазами).

Здесь показаны два типа розеток:
http://www.answers.com/topic/three-phase-electric-power

В других частях света однофазная розетка дает 220 и
«промышленная сила» составляет 380 вольт.

Когда мощность (в ваттах) одинакова, прибор, который
в основном «обогреватель» будет работать так же.Если в помещении, в котором будет размещаться агрегат, будет проводка промышленного типа,
он будет иметь оба типа розеток как на 220 В, так и на 380 В. Однако 220V
предназначен для освещения и т. д., может не иметь достаточной мощности, чтобы разместить
большой прибор.
Это было бы вероятной причиной для заказа трехфазного блока на 380 В.

Хеджи 


Разъяснение ответа
hedgie-ga

на
15 сентября 2005 г., 05:32 PDT

 Alsinger

Спасибо за добрые слова.

Ответ: «Да, но».

«Но» означает: не стоит недооценивать это.Это не так уж сложно,
 но здесь есть некоторые предположения:

1) Мы предполагаем, что прибор и розетка предназначены для однофазного переменного тока.
    (В ссылке, которую я дал вам ранее, есть изображения однофазной
     и 3-х фазные розетки)
2) Трансформатор должен иметь достаточную мощность (измеряемую в ваттах) для работы с
    нагрузки, иначе перегреваются или сгорают или (если у них это
    желательная функция безопасности) кидают встроенный автоматический выключатель.
3) Трансформаторы, предназначенные для использования потребителями, имеют соответствующие разъемы
    напряжение так, что физически невозможно получить неправильное напряжение
    перейти к прибору.Как только вы начнете использовать «адаптеры формы», чтобы обойти эту функцию безопасности, вы
   подключить промышленные трансформаторы (которые могут приходить только с оголенными проводами),
   вы должны знать, что делаете. (Электрики не такие уж и дорогие
   и обратите внимание на отказ от ответственности внизу этой страницы).
   
4) Вам может не понадобиться трансформатор (цена и масса растут с увеличением мощности,
    около 1 доллара за ватт). Адаптер напряжения (а не только адаптер формы) может подойти,
     в зависимости от типа загрузки и будет дешевле.

5) Если все вышеперечисленные условия выполнены, то тот же ящик может работать как
   повышающий (от 220 до 380) или понижающий (от 380 до 22В) трансформатор.Для получения дополнительной информации введите в поисковую систему (google) следующее:

УСЛОВИЯ ПОИСКА: электрическое напряжение, вилки и адаптеры

Hedgie 

Изолирующий трансформатор 25 кВА, 3 фазы, от 380 до 220 В

Существующие обзоры изолирующего трансформатора 25 кВА, 3 фазы, от 380 до 220 В

Ничего не скажешь, трансформатор очень надежный

Я очень доволен этим развязывающим трансформатором на 25 кВА.Хотя он немного тяжелый, но зато годится по назначению. Мне также нравится, что это трансформатор двойного назначения, который работает в обратном направлении, понижая при необходимости 220 вольт до 120. Обязательно порекомендую людям, которые хотят использовать бытовую технику в разных странах.

Из:
Билл Портер
|

Дата:
25.09.2018

Был ли этот обзор полезным?

да
Нет

(0/0)

Можете ли вы поставить 2 трансформатора в соответствии с моими требованиями?

У нас есть промышленная установка для Канады.Напряжение питания 400В 60Гц 3ф. Характеристики двигателя 460 В 60 Гц 3 фазы 25 л.с. Таких насосов два. Можете ли вы поставить 2 трансформатора в соответствии с этими требованиями?

Из:
Braeden
|

Дата:
10.10.2019

Был ли этот обзор полезным?

да
Нет

(0/0)

Да, можем, рекомендуемый трансформатор для каждого насоса будет мощностью 25кВА.

Требуется изолирующий трансформатор мощностью 15 кВА

Мощность этого изолирующего трансформатора 25 кВА для нас слишком велика. Можете ли вы предоставить нам модель трансформатора со следующими характеристиками?
, номинальное значение 15 кВА
3 фазы
Вход: 127/220 В
Конфигурация входа: Y или треугольник
Выход: 220/380 Вольт
Конфигурация выхода: Y
Изолированный.
В комплекте.

Из:
Лахлан
|

Дата:
28.12.2020

Был ли этот обзор полезным?

да
Нет

(0/0)

Да, рекомендуется разделительный трансформатор Артикул: ATO-T-SG15KVA
Мощность: 15 кВА
Первичный: 3-фазный, треугольник (L1, L2, L3 + G), 220 В
Вторичный: 3-фазный, звезда (L1, L2, L3 + N, G) ), 380 В
50/60 Гц
Алюминиевый провод
Режим охлаждения: Воздушное охлаждение сухого типа.
Тип: Защищенный.
Ссылка на сайт: https://www.ato.com/15-kva-isolation-transformer

Какой самый экономичный способ получить 380 В?

Q. Крупный текстильный завод закупил в Европе несколько ткацких станков, которые работают от трехфазного напряжения 380 В. Единственное доступное напряжение распределения — 480 В, 3 фазы. Завод запросил совета о наиболее экономичном способе получения 380 В для этих нагрузок.Электроснабжение этих ткацких станков осуществляется по 3-проводному шинопроводу. Электропитание установки — 480/277 В, 3 фазы, заземленная звезда.

Я определил, что автотрансформатор, подключенный по схеме разомкнутого треугольника (без нейтрали), будет наиболее рентабельным. Однако местная юрисдикция сообщила мне, что это соединение нарушает п. 210-9 НЭК. Я вижу, как автотрансформатор в незаземленной звездообразной системе может вызвать проблемы, но почему автотрансформатор с открытым (или закрытым) треугольником может создавать проблемы? Кто-нибудь может мне это объяснить? —N.К.

А. Н.К. не упомянул частоту цепи для ткацких станков. Частота в Великобритании — 50 Гц, во Франции — 331/3 Гц. Эти параметры были адаптированы в проектах туннелей под каналом несколько лет назад. Когда-то в Европе были и другие варианты источников энергии. Возможно, они все еще существуют.

Предлагаемое решение технически разумно, но без подробностей о 3-фазной системе на 380 В трудно быть уверенным. Однажды у нас была ситуация, требующая применения для 50 Гц в нашей схеме 60 Гц.Наше решение заключалось в использовании стандартного генератора 60 Гц, работающего на пониженной скорости, чтобы обеспечить мощность 50 Гц. Это сработало. Возможно, Н.К. мог применить подобное решение к своей ситуации. —B.B.B.

A. Я рекомендую использовать 3-фазный трансформатор с первичной обмоткой, соединенной треугольником 480 В, и вторичной обмоткой 380/220 В. Они доступны для приложений с частотой 60 Гц. Что касается соблюдения гл. 210-9 NEC, приложение будет подпадать под одно из исключений, поскольку заземленный провод цепи не нужен для питания нагрузок.Однако я предполагаю, что в исключениях не указано конкретное напряжение 380 В, поскольку в США оно редко встречается в —M.R.P.

A. N.K. Причина использования схемы автотрансформатора с открытым треугольником для изменения 3-фазного напряжения 480 В на 380 В или 400 В 3 фазы не подходит. Например, максимальная нагрузка в кВА не может превышать 58% от общей номинальной мощности банка. Если вы превысите этот предел, трансформаторы будут перегреваться. Кроме того, текущая нагрузка в 3-фазной первичной системе 480 В будет несбалансированной по фазам.И трехфазные напряжения между фазой и нейтралью от 380 до 400 В не будут симметричными, потому что «нулевая» точка нейтрали определяется исходным напряжением 480 В. Поскольку ему пришлось бы использовать два «нестандартных» однофазных автотрансформатора, каждый на 480 В, с ответвлением на 380 или 400 В, его план будет стоить столько же, сколько один «специальный» 3-фазный трансформатор, рассчитанный на дельта от 480 В до 380 или 400 В. Уай. Этот последний тип трансформатора обычно можно приобрести у более крупных производителей.

Для любой компоновки N.К. потребуется первичная и вторичная максимальная токовая защита в соответствии с NEC. Формат использования электроэнергии в Европейском Союзе теперь составляет 400VY / 230V, 3-фазный — был 380VY / 220V, 3-фазный. Этот параметр сопоставим с американской практикой использования оборудования с номинальным напряжением 460 В от источника питания 480 В. Также важно убедиться, что эти ткацкие станки будут правильно работать при мощности 60 Гц. Некоторые минимально спроектированные европейские системы утилизации электроэнергии не будут работать на частотах, отличных от 50 Гц. —F.M.P.

Трехфазные управляющие трансформаторы 380 В

Трехфазные управляющие трансформаторы, первичная обмотка 380 В

Трехфазные управляющие трансформаторы

TEMCo имеют медную обмотку и имеют теплоизоляцию, обеспечивающую компактный размер и длительный срок службы.Подключение упрощается благодаря прочно закрепленным клеммам со стандартными комбинированными винтовыми соединениями с головкой Робертсона с прорезями. Катушки с намоткой на шпульку обеспечивают лучшую эффективность, отличный отвод тепла и компактную конструкцию. Эти устройства рассчитаны на длительный срок службы, имеют 10-летнюю гарантию.

Ищете другую спецификацию? Ознакомьтесь с нашей ссылкой на наше руководство по выбору трехфазного управляющего трансформатора справа на этой странице. У нас есть тысячи моделей во всех конфигурациях.

Характеристики продукта

• Зарегистрировано в UL
• Утверждено CSA
• Медные обмотки
• Время сборки от 1 до 3 недель
• Надежно фиксированные клеммы со стандартными комбинированными винтовыми соединениями с головкой Робертсона с прорезями упрощают электромонтаж.
• Изготовлен из жаропрочной изоляции для компактных размеров и длительного срока службы.
• Уникальные катушки с намоткой на шпульку для большей эффективности, превосходного отвода тепла и компактной конструкции.

Выбрать другую Первичную конфигурацию »


110 В Вторичный

380 В, треугольник, первичный (вход) x 110 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


105Y / 61 В Вторичный

380 В, треугольник, первичный (вход) x 105Y / 61 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


120 В Вторичный

380 В, треугольник, первичный (вход) x 120 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


110Y / 64 В Вторичный

380 В, треугольник, первичный (вход) x 110Y / 64 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


208 В Вторичный

380 В, треугольник, первичный (вход) x 208 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


120Y / 69 В Вторичный

380 В, треугольник, первичный (вход) x 120Y / 69 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


220 В Вторичный

380 В, треугольник, первичный (вход) x 220 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


120/240 В вторичный

380 В, треугольник, первичный (вход) x 120/240 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.

380 В первичный — 120/240 треугольник вторичный (с центральным ответвителем)
кВА Выходные напряжения Выходной ток Открытые блоки Закрытые блоки
50 Гц 60 Гц 50 Гц 60 Гц
0.35 120 240 1,68, 0,84 TT9403 T08155 TT9410 T08162
0,50 120 240 2,41, 1,2 TT9404 T08156 TT9411 T08163
0,75 120 240 3,61, 1,8 TT9405 T08157 TT9412 T08164
1.00 120 240 4,81, 2,41 TT9406 T08158 TT9413 T08165
1,50 120 240 7,22, 3,61 TT9407 T08159 TT9414 T08166
2,00 120 240 9,62, 4,81 TT9408 T08160 TT9415 T08167
3.00 120 240 14,43, 7,22 TT9409 T08161 TT9416 T08168
6,00 120 240 28,87, 14,43 НЕТ НЕТ TT9417 T08169
9,00 120 240 43,3, 21,65 НЕТ НЕТ TT9418 T08170

230 В Вторичный

380 В, треугольник первичный (вход) x 230 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


208 В Вторичный

380 В, треугольник, первичный (вход) x 208Y120 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


236 В Вторичный

380 В, треугольник, первичный (вход) x 236 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


220Y / 127 В Вторичный

380 В, треугольник, первичный (вход) x 220Y / 127 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


240 В Вторичный

380 В, треугольник, первичный (вход) x 240 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


230Y / 133 В Вторичный

380 В, треугольник, первичный (вход) x 230Y / 133 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


347 В Вторичный

380 В, треугольник, первичный (вход) x 347 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


240Y / 139 В Вторичный

380 В, треугольник, первичный (вход) x 240Y / 139 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


360 В Вторичный

380 В, треугольник, первичный (вход) x 360 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


380Y / 220 В Вторичный

380 В, треугольник, первичный (вход) x 380Y / 220 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


380 В Вторичный

380 В, треугольник первичный (вход) x 380 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


400Y / 231 В вторичный

380 В, треугольник, первичный (вход) x 400Y / 231 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


400 В Вторичный

380 В, треугольник, первичный (вход) x 400 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


380/400 / 415Y В Вторичный

380 В, треугольник, первичный (вход) x 380/400 / 415Y вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.

380 В Первичный — 380/400 / 415Y Вторичный
кВА Выходные напряжения Выходной ток Открытые блоки Закрытые блоки
50 Гц 60 Гц 50 Гц 60 Гц
0.35 380 400 415 лет 0,53, 0,51, 0,49 TT9435 T08187 TT9442 T08194
0,50 380 400 415 лет 0,76, 0,72, 0,7 TT9436 T08188 TT9443 T08195
0,75 380 400 415 лет 1,14, 1,08, 1,04 TT9437 T08189 TT9444 T08196
1.00 380 400 415 лет 1,52, 1,44, 1,39 TT9438 T08190 TT9445 T08197
1,50 380 400 415 лет 2,28, 2,17, 2,09 TT9439 T08191 TT9446 T08198
2,00 380 400 415 лет 3,04, 2,89, 2,78 TT9440 T08192 TT9447 T08199
3.00 380 400 415 лет 4,56, 4,33, 4,17 TT9441 T08193 TT9448 T08200
6,00 380 400 415 лет 9,12, 8,66, 8,35 НЕТ НЕТ TT9449 T08201
9,00 380 400 415 лет 13,67, 12,99, 12,52 НЕТ НЕТ TT9450 T08202

415 В Вторичный

380 В, треугольник, первичный (вход) x 415 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


416Y / 240 В Вторичный

380 В, треугольник, первичный (вход) x 416Y / 240 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


440 В Вторичный

380 В, треугольник, первичный (вход) x 440 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


460Y / 266 В Вторичный

380 В, треугольник, первичный (вход) x 460Y / 266 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


460 В Вторичный

380 В, треугольник, первичный (вход) x 460 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


480Y / 277 В Вторичный

380 В, треугольник, первичный (вход) x 480Y / 277 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


480 В Вторичный

380 В, треугольник, первичный (вход) x 480 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


600Y / 347 В Вторичный

380 В, треугольник, первичный (вход) x 600Y / 347 вторичный (выход). Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений). Распределительный трансформатор сухого типа.


575 В Вторичный

380 В, треугольник, первичный (вход) x 575 вторичный (выход).Доступны 3 фазы, 50 Гц и 60 Гц, доступны открытые и закрытые сухие типы (Nema 1 — предназначены для использования внутри помещений).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *