Расчет нагрузки на фундамент калькулятор онлайн: Калькулятор Вес-Дома-Онлайн v.1.0 — Сбор нагрузок на фундамент

Содержание

Калькулятор Вес-Дома-Онлайн v.1.0 — Сбор нагрузок на фундамент

ШАГ 1. План дома

Расчет общей длины стен

Добавить параллельные оси между А-Г
012

Добавить перпендик. оси между Б-Г
012

Добавить перпендик. оси между В-Г
012

Добавить перпендик. оси между Б-В
012

Добавить перпендик. оси между А-Б
012

Размеры дома

Внимание! Наружные стены по осям А и Г являются несущими (нагрузки от крыши и плит перекрытия).

Длина А-Г, м

Длина 1-2, м

Колличество этажей
1 + чердачное помещение2 + чердачное помещение3 + чердачное помещение

ШАГ 2. Сбор нагрузок

Крыша

Форма крыши
ДвускатнаяПлоская

Материал кровли
ОндулинМеталлочерепицаПрофнастил, листовая стальШифер (асбестоцементная кровля)Керамическая черепицаЦементно-песчанная черепицаРубероидное покрытиеГибкая (мягкая) черепицаБитумный листКомпозитная черепица

Снеговой район РФ
1 район — 80 кгс/м22 район — 120 кгс/м23 район — 180 кгс/м24 район — 240 кгс/м25 район — 320 кгс/м26 район — 400 кгс/м27 район — 480 кгс/м28 район — 560 кгс/м2

Наведите курсор на нужный участок карты для увеличения.

Чердачное помещение (мансарда)

Отделка фасадов
Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен (фронтонов)
Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен
Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия
Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Эксплуатационная нагрузка, кг/м2
90 кг/м2 — для холодного чердака195 кг/м2 — для жилой мансарды

3 этаж

Высота 3-го этажа, м
м

Отделка фасадов
Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен
Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен
Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия
Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

2 этаж

Высота 2-го этажа, м
м

Отделка фасадов
Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен
Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен
Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия
Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

1 этаж

Высота 1-го этажа, м
м

Отделка фасадов
Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен
Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен
Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия
Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммПолы по грунтуЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Цоколь

Высота цоколя, м
м

Материал цоколя
Не учитыватьКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич полнотелый, 640ммКирпич полнотелый, 770ммЖелезобетонное монолитное, 200ммЖелезобетонное монолитное, 300ммЖелезобетонное монолитное, 400ммЖелезобетонное монолитное, 500ммЖелезобетонное монолитное, 600ммЖелезобетонное монолитное, 700ммЖелезобетонное монолитное, 800мм

Внутренняя отделка

Общая толщина стяжки, мм
Не учитывать50мм100мм150мм200мм250мм300мм

Выравнивание стен
Не учитыватьШтукатурка, 10ммШтукатурка, 20ммШтукатурка, 30ммШтукатурка, 40ммШтукатурка, 50ммГипсокартон, 12мм

Распределение нагрузок на стены

Коэффициент запаса
11. 11.21.31.41.5

сбор нагрузок, онлайн калькулятор, примеры и таблицы

Расчет фундамента — это важнейший вопрос, с которого должно начинаться строительство. От правильности сооружения основания постройки в будущем будет зависеть ее долговечность, да и вообще безопасность проживания.

Полный расчет фундамента является достаточно сложной задачей, доступной только для специалистов, но упрощенный расчет дает возможность обеспечить необходимый уровень надежности.

В действующих нормативных документах изложены основные правила таких расчетов, что и следует учитывать при планировании частного строительства (смотрите: типы частных домов).

Принципы расчетов

Расчет фундамента строения включает определение таких важнейших параметров, как заглубление, площадь опоры на грунт, размеры основания. Он должен учитывать все определяющие факторы – геофизические характеристики грунта, климатические особенности, величины и направленность нагрузок, в том числе от веса всех элементов строения и самого фундамента.

Необходимые исходные данные следует брать у организаций, специализирующихся на геологических изысканиях, а также из проверенных источников.

Прежде чем приступить к строительству, необходимо определить потребность в бетоне, армирующих элементах и других материалах. Возведение фундамента нельзя останавливать на середине, а потому расчеты должны помочь правильно закупить нужное их количество.

Следует учитывать, что расчеты несколько различаются для разных типов фундаментов. Свои методики существуют для ленточных, столбчатых, плитных и свайных вариантов оснований. При отсутствии достоверных данных о состоянии грунта в месте закладки дома, придется проводить геологические исследования с привлечением специалистов.

Учет состояния грунта

Несущая способность грунта считается важнейшей характеристикой, определяющей тип и размеры фундамента. Она, прежде всего, зависит от его плотности и структуры. Оценить ее можно по сопротивлению нагрузкам – Rо, указывающей какая нагрузка на единицу площади допустима без его проседания (на поверхностном уровне). Выражается Rо в кг/см² и считается табличной, т.е. справочной, величиной.

Величина сопротивления зависит от пористости (плотности) почвы и ее увлажненности. В таблице ниже приведены значения этого показателя для наиболее типичных почв.

Значения сопротивления нагрузке для некоторых типов грунта:

Характер грунтаКоэффициент
пористости
Ro ,
кг/см²
СухиеВлажные
Супеси0,5
0,7
3,1
2,6
3,1
2,0
Суглинки0,5
0,7
1,0
3,0
2,6
2,0
2,4
1,8
1,1
Глины0,5
0,6
0,8
1,0
6,0
5,0
3,1
2,6
4,2
3,0
2,0
1,2

Достаточно высоким сопротивлением обладают гравийные и щебневые грунты – 4-5 и 4,4-6 кг/см², соответственно, в зависимости от глинистого или песчаного наполнения. Крупнозернистый песчаник имеет Rо 3,6-4,4 кг/см², песчаник средней зернистости – 2,6-3,4 кг/см², мелкозернистый песчаник – 2-3 кг/см² в зависимости от увлажненности.

С увеличением глубины залегания пласта меняется плотность грунта, а значит, и сопротивление нагрузкам. Его значение на разных глубинах (h) можно определить по формуле R=0,005R0(100+h/3).

При определении заглубления фундамента важную роль играют такие параметры состояния грунта:

  1. Уровень расположения грунтовых вод. Фундамент не должен доходить до водного пласта. Этот параметр часто становится определяющим для выбора типа основания. В частности, при высоком расположении вод приходится возводить плитный фундамент.
  2. Глубина зимнего промерзания грунта. Подошва фундамента должна располагаться на 30-50 см ниже уровня промерзания. Дело в том, что при замерзании грунт сильно вспучивается, что создает выталкивающую нагрузку на основание.
  3. Уровень залегания высокопучинистых пластов. Фундаментную подошву нельзя упирать в такой грунт, а значит, его следует пройти насквозь.

Заглубление фундамента частного дома обычно не рассчитывается, т.к. требует использования сложной методики. Его выбор осуществляется, исходя из указанных практических рекомендаций.

Расчет опорной площади

При выборе фундамента важно правильно определить минимально допустимую площадь его опоры на грунт. Ее можно вычислить по формуле S= γn · F / (γc · Rо), где:

  • γc – коэффициент эксплуатационных условий;
  • γn – коэффициент запаса надежности, принимаемый равным 1,2;
  • F – полная (суммарная) нагрузка на грунт.

Коэффициент эксплуатационных условий (условий работы) зависит от характера грунта и сооружения. Так, на глинистых почвах для кирпичных конструкций он принимается равным 1,0, а для деревянных – 1,1.

В случае песчаного грунта: γc равен 1,2 при больших и длинных строениях, жестких небольших домах; 1,3 – для любых маленьких построек; 1,4 – для больших не жестких домов.

Сбор нагрузок на грунт (F)

Вес сооружения

Основу расчета составляет нагрузка, возникающая от веса всех элементов сооружения, включая сам фундамент. Конечно, подсчитать точно массу всех конструктивных деталей достаточно сложно, а потому принимаются средние значения удельного веса, отнесенного к единице площади поверхности.

Стеновые конструкции:

  • каркасные дома с утеплителем при толщине стены 15 см – 32-55 кг/м²;
  • бревенчатый и брусчатый сруб – 72-95 кг/м²;
  • кирпичная кладка толщиной 15 см – 210-260 кг/м²;
  • стены из железобетонных панелей толщиной 15 см – 305-360 кг/м².

Перекрытия:

  • чердак, деревянное перекрытие, пористый утеплитель – 75-100 кг/м²;
  • то же, но с плотным утеплителем – 140-190 кг/кв.м;
  • напольное перекрытие (цокольное), деревянные балки – 110-280 кг/м²;
  • перекрытие бетонными плитами – 500 кг/м².

Крыша:

  • металлическая кровля из листа – 22-30 кг/кв. м;
  • рубероид, толь – 30-52 кг/кв.м;
  • шифер – 40-54 кг/кв.м;
  • керамическая черепица – 60-75 кг/кв.м.

Расчет веса сооружения с учетом приведенных удельных весов сводится к определению площади соответствующего элемента и перемножении ее на данный показатель. В частности, для получения площади стен надо знать периметр дома и высоту стен. При расчете кровли необходимо учитывать угол ската.

Вес фундамента и снеговая нагрузка

Площадь опоры сооружения определяется на уровне подошвы, а значит, в суммарной нагрузке на грунт необходимо учитывать еще и вес фундамента. Методика расчета зависит от его типа:

  1. Ленточный фундамент. Прежде всего, определяется заглубление (Нф), которое должно быть ниже уровня промерзания. Например, при уровне 1,3 м нормальное заглубление составляет 1,7 м. Затем, определяется периметр ленты (Р), как 2(а+в), где а и в – длина и ширина дома, соответственно. Ширина ленты (bл) выбирается с учетом толщины стены. В среднем она составляет 0,5 м. Соответственно, объем ленточного фундамента V=P x bл х Нф. Умножив его на плотность армированного бетона (в среднем 2400 кг/м³), получим расчетный вес ленточного фундамента.
  2. Столбчатый фундамент. Расчет ведется на каждую опору. Вес одного столба определится, как произведение плотности бетона на объем заливки (V=SxНф, где S – площадь столба). Кроме того, обязательно учитывается вес ростверка, который рассчитывается аналогично ленточному фундаменту.
  3. Для определения веса монолитной бетонной плиты вычисляется ее объем (V=SxНф, где S – площадь плиты). Заглубление обычно составляет порядка 40-50 см.

В зимнее время нагрузка на грунт может значительно увеличиться за счет скопления снега на кровле. Принято считать, что при скате кровли с углом более 60 градусов, снег не накапливается, и снеговую нагрузку можно не учитывать.

При меньшем угле наклона крыши учитывать ее необходимо. Многолетние наблюдения дают такие параметры этой нагрузки:

  • северные районы – 180-195 кг/м²;
  • средняя полоса РФ – 95-105 кг/м²;
  • южные регионы – до 55 кг/м².

После определения всех указанных весовых параметров можно приступить к расчету минимальной площади подошвы по вышеприведенной формуле. Полная нагрузка на грунт (F) определится, как сумма веса стен, перекрытий, кровли, фундамента и снеговой нагрузки.

При расчете столбного и свайного фундамента суммарная нагрузка делится на количество опор, т.к. ростверк равномерно распределяет ее на опоры.

Расчет потребности в бетоне

Работы по заливке бетона нельзя останавливать, не закончив их полностью. Для этого важно правильно оценить потребность в нем. Расчет необходимого количества проводится с учетом типа фундамента:

  1. Ленточный вариант. Порядок расчета можно рассмотреть на примере. Фундамент делается для дома размером 6х8 м. Глубина промерзания грунта составляет 1 м, а потому заглубление выбираем 1,4 м. Ширина ленты (уточненная по расчету минимальной площади опоры) – 0,5 м. Объем фундамента составит V=PxbлхНф, т.е. (2х6х8)х1,4х0,5=67,2 м³. Рекомендуется взять запас порядка 8-10 процентов. Окончательно, для данного фундамента потребуется 74 м³ бетона.
  2. Столбчатый тип. Если опора имеет прямоугольное сечение, то площадь ее определится, как произведение двух сторон. При возведении столба круглой формы применяется известная формула расчета окружности S=3.14R2, где R – радиус столба.
  3. Плитный фундамент. Объем определяется по формуле для правильного параллелепипеда, т.е. V=axbxHф, где а и b – размеры сторон плиты (м). Например, для дома 6х8 м при заглублении 0,4 м объем составит 19,2 м³.

Несколько сложнее учесть дополнительную потребность в бетоне при формировании ребер жесткости на плитном основании. Они изготавливаются обычно с шагом 2 м, причем по краям они располагаются обязательно.

Для выбранного примера количество ребер по длине составляет 4, а по ширине 3. Общая длина этих элементов составит (8х4)+(6х3) =50 м. Наиболее характерная ширина и высота ребра – 0,1 м. Следовательно, общий дополнительный объем бетона составит 50х0,1х0,1=0,5 м³.

[stextbox id=’warning’]Советуем почитать: Марка бетона и пропорции для фундамента частного дома[/stextbox]

Расчет потребности арматуры

Перед началом работ важно правильно оценить и потребность материалов для обеспечения армирования фундамента. Расчет проводится следующим образом.

Ленточный фундамент

Для него обычно используется 2 горизонтальных ряда стальной арматуры периодического профиля диаметром 10-14 мм.

Для вертикальной и поперечной увязки можно применять гладкие стержни диаметром 8-10 мм.

Связка стержней между собой обеспечивается стальной вязальной проволокой.

Пример расчета для дома 6х8 м. Общая длина фундамента – 28 м. Для продольного армирования используется арматура диаметром 12 мм, и она укладывается по 2 штуки в каждом ряду (в сечении – 4 штуки). Стандартная длина стержней – 6 м.

При соединении применяется нахлест в 0,2 м, а стыков потребуется на 28 м не менее 5. Для горизонтальной армировки нужно 28х4=112 м. Дополнительно, на нахлесты – 5х4х0,2=4 м. Общий итог – 116 м.

Для вертикальной увязки нужны стержни диаметром 8 мм. При высоте фундамента 1,4 м длина каждого стержня составит 1,2 м. Устанавливаются они с шагом 0,6 м, т.е. количество стержней на всю длину 2х28/0,6=94 штуки.

Общая длина составит 94х1,2=113 м. В поперечном направлении связка обеспечивается в тех же точках. При ширине ленты 0,4 м длина каждого стержня составляет 0,3 м. Потребность определится, как 94х0,3=29 м. Общая потребность в арматуре диаметром 8 мм составит 142 м.

Потребность в вязальной проволоке определяется по количеству узлов. В одном сечении их 4 штуки, а общее количество 4х28/0,6 =188. Для одной связки потребуется порядка 0,3 м проволоки. Суммарная потребность – 0,3х188=57 м.

[stextbox id=’warning’]Еще по теме: Правила армирования ленточного фундамента[/stextbox]

Расчет онлайн размеров, потребности арматуры и бетона

Столбчатый

Арматура устанавливается в вертикальном положении (стержни диаметром 10-12 мм), увязанные в поперечном сечении стержнями диаметром 6-8 мм. на один столб требуется 4 основных стержня, а увязка производится в 3-х местах.

В рассматриваемом примере (заглубление 1,4 м) для одного столба нужно 4х1,4=5,6 м арматуры периодического профиля диаметром 10 мм. Для поперечной увязки используются стержни длиной 0,3 м.

Их общая потребность 3х4х0,4= 4,8 м. Вязальной проволоки нужно 3х4х0,3 м=3,6 м.

Онлайн расчет размеров, потребности арматуры и бетона

Плитный

Обычно армирование производится из стальных стержней диаметром 6-8 мм, уложенных в виде сетки в один ряд. Шаг укладки составляет 0,3 м. Для дома 6х8 м потребуется по ширине 6/0,3=20 стержней, а по длине – 8/0,3=27 штук.

Общая длина составит (27х6)+(20х8) =382 м. Количество пересечений стержней – 27х20=540, т.е. вязальной проволоки нужно 540х0,3=162 м.

Калькулятор онлайн размеров, а также потребности арматуры и бетона

Правильная заготовка материалов позволяет избежать проблем при строительстве. При покупке их стоит учитывать наличие строительных навыков. Отсутствие опыта может приводить к незапланированным отходам.

[stextbox id=’warning’]Советуем почитать: Устройство фундамента под частный дом своими руками[/stextbox]

Строительство фундамента любого типа требует проведения расчетов. Без учета реальных нагрузок и состояния грунта невозможно обеспечить надежную его конструкцию.

Несоответствие его размеров нагрузкам может привести к проседанию сооружения, а то и к его разрушению. Точный расчет могут провести только специалисты, но необходимый оценочный расчет способен осуществить любой человек.

Как рассчитать нагрузку на фундамент: калькулятор онлайн

Фундамент является основной частью любого здания, без него постройка не сможет выдержать влияние окружающей среды. Но не многие знают, как рассчитать нагрузку на фундамент.

Придумано большое количество формул для подобных расчетов, но для них необходима детальная информация о планируемой постройке и не каждый новичок сможет собрать все данные.

В данной статье будет рассмотрено, как правильно определить расчет нагрузки на фундамент дома и какая информация для этого понадобится.

Суть расчета нагрузки

Для расчета нагрузки необходимо собрать как можно больше информации

Основное давление на грунт оказывает не фундамент, а само помещение, так как даже тяжеловесная плита весит меньше, чем разные стены в постройке.

Основание также оказывает воздействие на почву за счет своего веса и сопротивления движению грунта.

Дополнительно всегда учитывают сопротивление разным водам, так как она оказывает сильное давление на боковые стенки фундамента. Расчет нагрузки на грунт от фундамента невозможен без сбора основной информации.

К этой информации относятся следующие данные:

  • масса самой постройки;
  • вес планируемого фундамента и его разновидность;
  • качественные параметры грунта;
  • климатические условия окружающей среды и строение почвы;
  • масса применяемых стройматериалов.

После анализа всех факторов становится очевидно, что проект основания возможен только после осуществления всех необходимых расчетов. При условии, что будут соблюдены все вышеперечисленные факторы, получится соорудить надежный и прочный фундамент.

Масса постройки

Масса постройки складывается из веса всех используемых материалов

Многие специалисты знают, что для расчета массы здания хватит информации о несущих поверхностях и перекрытиях, но все немного сложнее.

Масса возведенной постройки это вес всех строительных материалов, используемых при строении несущих и промежуточных стен, а также их способности выдержать вес перекрытий и крыши при возможном выпадении снега. Масса постройки состоит из:

  1. Веса несущих поверхностей, перегородок и перекрытий.
  2. Массы крыши с учетом всех дополнительных материалов, которые обеспечивают прочность помещению при сильных порывах ветра.
  3. Вес коммуникаций и канализации.
  4. Вес строительных изделий для основания, которые позволяют ему выдерживать влияние влаги и грунтовые сдвиги.
  5. Внутреннее обустройство здания. Зачастую берется показатель от 1 до 5 % от веса несущих конструкций.

Исходя из этого, выполнить расчет массы самой постройки можно только по проекту. Причем рассчитать массу правильно технически невозможно.

Нагрузка на фундамент

Наибольшую нагрузку оказывает постоянное давление самого строения

Это понятие включает в себя следующие параметры:

  • постоянное давление от самой постройки;
  • временная нагрузка, которую оказывают климат. Это может быть сильный ветер, дождь или снег на крыше;
  • нагрузка от установленного внутри помещения оборудования. Этот показатель зачастую не учитывают, но при детальных подсчетах берется коэффициент в 1,05.

Специалисты в проектировании крайне серьезно относятся к нахождению площади опоры. Здесь осуществляется сбор информации о характеристиках грунта, а также типа армирования основания. Учитывать эти факторы нужно обязательно, так как именно они влияют на выбор вида основания.

Нагрузка на грунт от фундамента включает в себя следующие факторы:

  • глубина оснований;
  • давление кровли;
  • давление от снежных образований;
  • давление от перекрытий;
  • нагрузка несущих стен.

Глубина фундамента

Глубина монтажа фундамента во многом зависит от параметров грунта. Понадобится применить информацию из следующей таблицы.

При учете, что глубина создания фундамента должна быть выше отметки промерзания грунта, зачастую принимается значение в 140 см. Ниже этой отметки отпускаться не рекомендуется вне зависимости от вида грунта.

Нагрузка от кровли

Крыша со сложными скатами потребует более сложных расчетов

Давление всегда оказывается на несущие поверхности и перекрытия, если балки имеют свойство распространять нагрузку на остальные участки. Для простой двухскатной крыши с незначительными наклонениями предусматривают 2 одинаковые деревянные стороны, при этом их давление в равной степени распределяется между несущими поверхностями.

Здесь понадобится вычислить площадь проекции крыши на горизонтальной плоскости, после умножить ее на удельный вес строительных изделий, которые использовались для установки крыши. Схема расчета выглядит следующим образом:

  1. Вычисление площади проекции. При площади здания дома в 75 м², проекция будет полностью соответствовать этой отметке.
  2. Длина базиса. Рассчитывается исходя из суммы 2 максимально длинных поверхностей, которые служат в качестве опоры для крыши.
  3. Площадь базиса.
  4. Покрытие кровли и угол наклона крыши.

Расчет давления от снежных образований

Обязательно расчитайте снеговую нагрузку и усильте кровлю при необходимости

Если крыша имеет большой угол наклона и оборудована защитой от осадков, то давление от них будет сведено к минимуму.

Многие специалисты не рассчитывают этот фактор, но если угол наклона крыши меньше 10° или она плоская, тогда придется брать его во внимание.

Понадобится обязательно рассчитать снеговую нагрузку и усилить чердачную постройку. Подробнее смотрите в этом видео:

Нагрузка от перекрытий

Нагрузка от перекрытий зависит от количества этажей

Перекрытие опирается на несущие поверхности, но на них также возможно будет оказываться давление. Процесс расчета при этом не имеет особых отличий, только понадобится учитывать параметры перекрытий и материал, из которого они были изготовлены.

Размеры перекрытия равняются площади этажа, так что для таких подсчетов понадобится информация о количестве этажей, оборудовании цоколя и материал, из которого выполнено перекрытие. Нагрузку высчитываем следующим образом:

  1. Расчет проводится для площади перекрытия в 80 м². В помещение их 2, одно изготовлено из железобетона, а второе – на основе дерева.

    Деревянные перекрытия расчитываются иначе, чем железобетонные

  2. Вес железобетонного перекрытия составляет 80 х 500=40000 кг. При этом 500 – это удельная масса 1 м² железобетона.
  3. Чтобы посчитать массу деревянной перегородки, нужно: 80 х 200=16000 кг.
  4. Исходя из вышеперечисленных результатов, суммарная нагрузка на 1 м² составит (40000+16000)/8=7000 кг/м².

Нагрузка основания на грунт

Этот этап является ключевым при расчете фундамента на несущую способность. Он влияет на выбор типа фундамента, а также помогает проверить устойчивость конструкции к разным воздействиям. Подробнее смотрите в этом видео:

Нагрузка высчитывается путем умножения объема основания на плотность применяемого изделия, полученное число делится на площадь фундамента.

Высчитать нагрузку фундамента гораздо легче, чем может показаться. При возникновении затруднений рекомендуется применить онлайн-калькулятор, который поможет в выполнении расчетов. При этом определение давления на грунт позволит избежать большого количества затруднений во время постройки деревянного дома.

Расчет нагрузки на фундамент — Самая лучшая система расчета нагрузки

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

  • Регион, в котором строится здание;
  • Тип почвы и глубину залегания грунтовых вод;
  • Материал, из которого будут выполнены конструктивные элементы здания;
  • Планировку здания, этажность, тип кровли.

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

Справочная таблица для определения глубины заложения фундамента по регионам

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

Справочная таблица – Удельный вес разных видов кровли

  1. Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м2.
  2. Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
  3. Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м2.
  4. Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м2.
  5. Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м2.

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

Таблица – расчет снеговой нагрузки на фундамент

  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м2.
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м2. Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м2.

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

Таблица расчет веса перекрытий и их нагрузка на фундамент

  1. Площадь перекрытий равна площади дома – 80 м2. В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м2.

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

Таблица – Удельный вес стен

  1. Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м2.
  2. Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м3.
  3. Находим вес стен, умножив объем на удельный вес материала из таблицы 5:   43,2·1800=77760 кг.
  4. Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м2.
  5. Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

Таблица – удельная плотность материало для грунта

  1. Площадь фундамента – 14,4 м2, глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м3.
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м2.

Расчет общей нагрузки на 1 м

2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R0 определяют по таблицам  СНиП 2.02.01—83 «Основания зданий и сооружений».

  1. Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1386+7000+5400+2525=16 611 кг/м2=17 т/м2.
  2. Определяем условное расчетное сопротивление грунта по таблицам СНиП 2.02.01—83. Для влажных суглинков с коэффициентом пористости 0,5 R0 составляет 2,5 кг/см2, или 25 т/м2.

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Свайный фундамент может выручить в тех обстоятельствах, когда никакой другой тип основы под строящееся здание невозможен или же становится чрезвычайно сложным и невыгодным. Сваи, заглублённые ниже уровня промерзания грунта и достигшие плотных его слоев, способны выдержать очень серьезную нагрузку. Безусловно, это требует правильных расчётов их несущей способности и, исходя из этого и общей нагрузки – количества и схемы расстановки.

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Это, кстати, касается и столбчатого фундамента – возможности опор не безграничны, и чрезвычайно важно правильно распределить нагрузку на них. Значит, необходимо каким-то образом оценить, какую же весовую и эксплуатационную нагрузку будет оказывать планируемое к постройке здание на подобное основание. Быстро и с достаточной степенью точности это поможет сделать калькулятор расчета нагрузки на свайный или столбчатый фундамент.

Ниже будут приведены необходимые пояснения по порядку проведения расчетов.

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Перейти к расчётам

 

Укажите запрашиваемые значения и нажмите «Рассчитать суммарную нагрузку на свайный фундамент»

СТЕНЫ ДОМА
Площадь стен указывается суммарно, при желании — можно с вычетом оконных и дверных проемов.
(Доступно введение двух вариантов, например, для несущих внешних и внутренних стен. Если вариант не используется, оставьте значение площади по умолчанию — 0)

 

Стены, тип №1

Материал стен

— кирпичная кладка в полкирпича (120 мм)- кирпичная кладка в 1 кирпич (250 мм)- кирпичная кладка в 1.5 кирпича (380 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм- стены из сэндвич-панелей толщиной 150 мм, с утеплением из минеральной ваты- стены из сэндвич-панелей толщиной 150 мм, с утеплением из пенополистирола или пенополиуретана

Площадь стен, м²

 

Стены, тип №2

Материал стен

— кирпичная кладка в полкирпича (120 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм- каркасные перегородки из гипсокартона- перегородки из сэндвич-панелей толщиной 50-80 мм, с утеплением из минеральной ваты- перегородки из сэндвич-панелей толщиной 50- 80 мм, с утеплением из пенополистирола или пенополиуретана

Площадь стен, м²

ПЕРЕКРЫТИЯ
Если в перекрытии есть проем, например, для межэтажной лестницы, то его следует исключить из общей площади
(Доступно введение двух вариантов, например, для межэтажного и чердачного перекрытия. Если вариант не используется, оставьте значение площади по умолчанию — 0)

 

Перекрытие, тип №1 (межэтажное)

Тип перекрытия

— перекрытие межэтажное или цокольное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

 

Перекрытие, тип №2 (чердачное)

Тип перекрытия

— перекрытие чердачное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

СТРОПИЛЬНАЯ СИСТЕМА И КРОВЛЯ
При выборе типа кровли автоматически будет учитываться и средний вес стропильной системы с обрешеткой.
Одновременно к весу крыши будет добавлено ориентировочное значение снеговой нагрузки, в зависимости от региона строительства и крутизны скатов

Общая площадь кровли, м²

Тип кровли

— листовая сталь, профнастил, металлочерепица- мягкая полимер-битумная кровля в два слоя- абесто-цементный шифер- керамическая черепица

Укажите зону, в соответствии с картой-схемой

IIIIIIIVVVIVII

РОСТВЕРК
Если для обвязки свай используется деревянный брус, то его можно просто учесть в площади стены — большой ошибки не будет.
Ростверк из металлопроката или железобетона лучше принять в расчет дополнительно

Длина ростверка (учитывая внешний периметр и внутренние перемычки), метров

Материал ростверка:

Пояснения по проведению расчетов

Безусловно, предложенный алгоритм не претендует на профессиональную точность, но при планировании небольших домов и хозяйственных построек на загородном участке вполне может помочь оценить складывающуюся картину.

Нагрузка, выпадающая на свайный фундамент, в первую очередь включает массу самой постройки, планируемой к возведению.

В калькуляторе предусмотрено внесение площадей стен и указание материала их изготовления. При желании, чтобы получить более корректный результат, можно исключить из площади оконные и дверные проемы. Подсчет площадей стен необходимо провести отдельно, согласуюсь с имеющимся планом или хотя бы наметками на будущее строительство. Правильно рассчитать площадь поможет специальная публикация портала.

Расчет площадей – быстро и точно

Даже простейшие геометрические формулы иногда подзабываются, и это не говоря о более сложных случаях. Ничего страшного: откройте по ссылке статью, специально посвященную расчету площадей – там изложен порядок вычислений, размещены удобные калькуляторы.

Цены на винтовые сваи

винтовые сваи

Внешние стены и внутренние капитальные перегородки могут отличаться и толщиной, и материалом изготовления. Поэтому пользователю предоставляется возможность внесения двух вариантов стен. Если такой необходимости нет, то просто в поле ввода площади оставляется значение «0».

Далее, следуют поля ввода параметров перекрытий, где также предусмотрены два возможных варианта, например, для пола первого этажа и для чердачного перекрытия. В программу расчета уже внесены необходимые поправки на эксплуатационные нагрузки на перекрытия – вес мебели и других предметов обстановки, динамическое воздействие от находящихся в доме людей и т.п.

Следующий блок ввода данных – это параметры крыши. При выборе типа кровли сразу будет учтена и средняя масса стропильной системы. Кроме того, на кровлю зимой оказывается немалая нагрузка от выпавшего снега. Чтобы учесть этот фактор, необходимо указать зону своего региона по уровню снеговой нагрузки (по предложенной карте-схеме), и крутизну скатов кровли.

Карта-схема для определения своей зоны по среднестатистическому уровню снеговой нагрузки на кровлю

Сваи или столбы соединяются брусом обвязки либо ростверком. Если применяется деревянная обвязка, то не будет большой ошибкой просто включить ее в площадь стен. Но в том случае, когда устраивается ростверк из металла или даже железобетонной ленты – имеет смысл принять его во внимание дополнительно. При выборе этого пути расчета откроются дополнительные поля ввода данных – длины ростверка и материала его изготовления.

Итоговый результат будет выдан в килограммах и тоннах. Получив это значение и зная несущий потенциал опоры, несложно будет определиться и с количеством свай или столбов.

Как оценивается несущая способной винтовых свай?

Этот параметр зависит от особенностей грунта на предполагаемой глубине залегания винтовой части опоры и от размерных параметров самой сваи. Подсчитать несущую способность винтовой сваи поможет специальный калькулятор, к которому ведет указанная ссылка.

Расчет столбчатого фундамента, расчет свайного фундамента

Расчет столбчатого фундамента, свайный фундамент с ростверком

Простой онлайн калькулятор рассчитает точное количество требуемых строительных материалов для монолитного свайно-ленточного фундамента. Начните расчет сейчас!

Столбчато-ленточный фундамент

Чаще всего в загородном строительстве используют буронабивные сваи фундамента, которые идеально дополняются монолитной лентой – это самый простой и экономичный способ. Сваи берут на себя несущую функцию, тогда как ростверк (лента) берет на себя соединяющую функцию и таким образом равномерно распределяет нагрузку на столбы. Столбчатый монолитный железобетонный фундамент отлично подходит для пучинистых грунтов, когда земля промерзает и расширяется, при этом строение должно быть легким или средней тяжести. Фундамент на столбах идеальное решения для возведения деревянных, каркасных и дачных домов, а так же гаражей и хозяйственных построек. Столбчатый фундамент лучше не использовать при строительстве каменных или кирпичных домов.

Столбчатый фундамент своими руками

Онлайн калькулятор столбчатого фундамента позволяет вам не только произвести расчет количества столбов, количества арматуры и объема бетона, но и получить наглядные чертежи фундамента с ростверком и полную стоимость буронабивного фундамента с ростверком.

Технология предполагает заливку бетонного раствора в опалубку, для этого нужно заранее пробурить отверстия, при возведении частного дома земляные работы можно провести в ручную, без привлечения бурильной установки. Диаметр сваи рассчитывается из расчета давления, которое будет оказывать вес загородного дома. Сваи фундамента должны быть углублены ниже, чем уровень промерзания грунта в вашем регионе. Бетонные столбы подойдут для любой глубины, они могут быть монолитными, как в нашем случае, важно чтобы их ширина была минимум 400 мм. Асбестобетонные или металлические трубы подходящего диаметра можно залить бетоном, при этом исключаются работы по опалубке. Рекомендуемое расстояние между столбами не более 3 метров.


Несущая способность фундамента на сваях с ростверком

Учтите, что данный онлайн калькулятор предполагает только расчет материалов и затрат по вашему фундаменту, но не дает возможность просчитать несущую способность фундамента, так как для подобного расчета потребуется геодезия вашего участка, сбор нагрузок и прочее.

Калькулятор фундамента из винтовых свай, онлайн расчет цены

Калькулятор фундамента из винтовых свай, онлайн расчет

Калькулятор фундамента из винтовых свай – онлайн расчет – простой способ сориентироваться в ценах на продукцию/на работы по строительству.

Калькулятор фундамента под ключ

Самое главное достоинство онлайн калькулятора в том, что он позволяет выполнить все расчеты самим без помощи специалиста. Сама схема тоже довольно проста.

На большей части страниц нашего сайта в правом верхнем углу есть кнопка «Калькулятор фундамента». Нажав на нее, Вы переходите на отдельную страницу, на которой размещены поля, обязательные для заполнения. От Вас потребуется указать тип строения (дом, баня, забор, пирс), материал стен (для дома это дерево, каркас или кирпич, для забора – профлист, сетка-рабица), этажность, размер постройки. Эти данные необходимы для определения нагрузок от сооружения.

Для удобства все поля снабжены выпадающими вкладками, в которых указаны самые частые варианты. Это значительно сокращает время заполнения.

Калькулятор фундамента от компании «ГлавФундамент» также включает два дополнительных поля – грунтовые условия и коррозионная активность грунта. При их заполнении у Вас, вероятно, могут возникнуть вопросы, так как почти все организаций на рынке не запрашивают эту информацию для расчета цены свай/строительно-монтажных работ. Почему мы сделали их обязательными?

Параметры свай, их количество, расстановка в фундаменте могут назначаться только на основании информации о нагрузках от строения и о грунтах. Если оба эти фактора не будут учтены, возникнет риск просадки (при мощности слоя плотного грунта под сваей менее 1 метра или сезонном намокании некоторых типов грунтов, снижающем их несущую способность) или выпучивания (при действии касательных сил морозного пучения) фундамента. Вы также не сможете быть уверены, что срок службы конструкции будет таким, как требует ГОСТ 27751-2014 «Межгосударственный стандарт. Надежность строительных конструкций и оснований. Основные положения».

Эффективная работа двухлопастных винтовых свай возможна только при рассчитанном, исходя из данных о грунтах, расстоянии между лопастями. То же касается шага лопастей, угла их наклона (больше информации в статье «Особенности расчета двухлопастных винтовых свай»).

Для включения в работу сваи околосвайного массива грунта ненарушенной структуры должна подбираться рациональная конфигурация лопасти, соответствующая типу грунта (подробнее в статье «Ключевые принципы подбора параметров лопастей»).

Толщина металла и марка стали – это тоже переменные, зависящие от степени коррозионной активности грунтов. Если среда сильноагрессивная, а свая выполнена из стали марки Ст3 с толщиной стенки 4 мм и менее, не стоит рассчитывать, что она прослужит более 15-20 лет.

Таким образом, данные о грунтовых условиях площадки строительства столь же необходимы при проектировании, как данные о нагрузках. Если Вы не обладаете необходимой информацией, специалисты компании «ГлавФундамент» проведут необходимые исследования – геолого-литологические изыскания, а также измерения коррозионной активности грунтов (подробнее об услугах в статье «Экспресс-геология (геолого-литологические изыскания) и измерения коррозионной активности грунтов»).

Онлайн калькулятор, разработанный нашей компанией, подходит только для объектов малоэтажного строительства. Фундаменты промышленных и крупных гражданских объектов (трубопроводы, стенды, мачты, вышки, ЛЭП) рассчитываются в системах автоматизированного проектирования (САПР) после проведения полноценных инженерно-геологических изысканий. Для подтверждения полученных результатов организуются контрольные испытания грунтов при действии вдавливающих, выдергивающих и горизонтальных нагрузок. Это связано с предъявлением повышенных требований к уровню безопасности этих объектов.

Если Вам нужно рассчитать промышленную или крупную гражданскую постройку, перейдите по ссылке и заполните заявку в проектный отдел нашей компании, указав необходимые данные. Если потребуется дополнительная информация, мы Вам перезвоним.

Расчет количества, подбор конструкций и расстановка свай

При определении количества и сочетаний свай в программе «Калькулятор фундамента» учитываются требования нормативных документов, действующих в РФ, а также нормы проектирования, разработанные нашими специалистами по результатам исследований и испытаний, как собственных, так и выполненных зарубежными специалистами.

На фундаментную конструкцию практически любого сооружения (дом, баня) воздействуют сразу несколько типов нагрузок (под ответственными узлами сооружения, под несущими и ненесущими стенами, под лагами пола). Каждый тип нагрузок требует применения конструкции сваи с определенной несущей способностью. Поэтому предложенное решение будет включать не один, а сразу несколько их видов.

Но есть моменты, которые сложно учесть при онлайн расчете. Это, например, характеристики провисания ростверка (расчетная величина). Есть мнение, что во избежание провисания ростверка достаточно придерживаться обобщенных значений допустимых нагрузок. Это некорректно. Пролет между сваями определяется для каждого объекта, с учетом нагрузок на обвязочный материал от каждой стены.

В этой связи расчет, выполненный в калькуляторе фундамента, можно рассматривать только как предварительный. Он помогает Вам сформировать общее представление о цене, но это не решение, гарантирующее безопасность здания.

Калькулятор расчета винтового фундамента

При создании калькулятора расчета винтового фундамента мы ставила перед собой задачу разработать программу, которая будет удобна и одновременно полезна.

Во-первых, мы можете сравнить цены. Плюс – для этого не нужно открывать множество вкладок, вся необходимая информация есть на нашем сайте. Сервис рассчитывает цену сразу в трех категориях («Эконом», «Стандарт», «Премиум»). В итоговую цифру также войдет стоимость строительно-монтажных работ (для этого достаточно поставить галочку в поле «С учетом работ»).

Во-вторых, мы добавили в калькулятор справочную информацию, которая дает понять, чем мы руководствуемся, предлагая Вам именно это решение.

К примеру, ограждения и пирсы принято относить к легким сооружениям, из-за чего часто под них рекомендуют однолопастные сваи. Это кажется правильным, ведь небольшие нагрузки от объектов не требуют строительства конструкции с большой несущей способностью. Но такой подход совершенно не учитывает воздействие на сваи значительных выдергивающих и горизонтальных нагрузок.

Заборы из дерева или профлиста характеризуются большой парусностью. Пирсы и причалы подвержены воздействию течения, схода льда. Возникающее усилие будет постоянно пытаться вырвать сваю из земли. А такой тип воздействия наименее предпочтителен для конструкций с одной лопастью.

Чтобы избежать возможных последствий Вы будете вынуждены выполнить бетонирование основания колонны или обвязку швеллером или профтрубой. Введение же дополнительной лопасти решит эту проблему даже без дополнительного усиления конструкции.

Калькулятор фундамента под дом. Расчет цены

Калькулятор фундамента – удобный инструмент, чтобы предварительно спланировать фундаментную конструкцию под дом, баню или любой другой объект малоэтажного строительства. Он также незаменим, когда Вам нужен примерный расчет цены для понимания возможных расходов.

Но мы не рекомендуем опираться исключительно на данные программы. Все-таки сервис – это только набор алгоритмов, который не может в полной мере учесть особенности объекта и участка, не может заменить опыт инженера-конструктора. А если учесть, что проектный отдел компании «Главфундамент» выполняет расчет бесплатно и за 24 часа, то выбор станет очевиден.

Бесплатный калькулятор бетонных оснований | SkyCiv

Этот калькулятор расчета бетонных оснований помогает инженерам проектировать фундаменты для опор, комбинированных опор, свай и т. Д … Программное обеспечение включает в себя расчеты опрокидывания, скольжения, коэффициентов полезности конструкции (односторонний сдвиг, двусторонний сдвиг, изгиб X и изгиб Y ) и многое другое — согласно AS 3600 и ACI 318. Бесплатный инструмент также рассчитает объем бетона в вашей конструкции.

Этот онлайн-калькулятор фундамента представляет собой упрощенную версию нашего программного обеспечения для проектирования фундаментов / опор, которое способно выдерживать большее количество нагрузок и типов фундаментов, включая комбинированные опоры и несимметричные изолированные опоры.Просто начните с выбора кода дизайна и начните с добавления или редактирования размеров вашего фундамента с помощью параметров ширины, высоты и глубины. Фигура автоматически обновится.

Этот простой в использовании инструмент поможет инженерам рассчитать ряд важных результатов для изолированных и комбинированных опор. К ним относятся опрокидывание, требования к размерам, скольжение, давление грунта, коэффициенты прочности на сдвиг и изгиб в одном и двух направлениях. Это дает инженеру хорошее представление о том, пройдет ли фундамент или нет.Калькулятор оснащен интерактивной графикой, несколькими типами нагрузки, встроенным армированием и мощным отчетом о расчетах. Некоторые из этих функций недоступны в бесплатной версии, но вы можете посетить нашу страницу Foundation Design Software для получения дополнительной информации о функциях и возможностях полных версий.

С помощью этого калькулятора фундамента общего назначения можно также рассчитать бетонные сваи и фундаменты свайных крыш. Это может быть разработано в контексте ACI 318 или AS 3600 (и AS 2159 для почвы).Это программное обеспечение для бетонных свай будет отображать результаты проверки осевого изгиба, торцевого подшипника, изгиба *, бокового * и сдвига *. Примечание: любые результаты, отмеченные звездочкой (*), доступны только в платной версии.

Наряду с расчетными коэффициентами опрокидывания, скольжения и бетона калькулятор также рассчитает объем бетона в подушке. Результат вернет кубические метры бетона для метрической системы и кубические футы для британской системы единиц. Этот калькулятор оценивает количество бетона, необходимого для ваших изолированных опор, для быстрого выполнения расчетов и оценок габаритов.

Дальнейший проект фундамента можно рассчитать с помощью нашей полной версии Foundation Design Software. Это программное обеспечение позволит рассчитывать бетонные опоры ACI 318 и AS 3600 (также известные как бетонные опоры) с полной нагрузкой и результатами. Сюда входит подробный отчет о расчетах и ​​дополнительных конструктивных особенностях. Это программное обеспечение для проектирования фундаментов также можно использовать для расчета и проектирования бетонных свай в соответствии с AS 3600 (AS 2159) и ACI 318 с несколькими слоями грунта, дополнительными возможностями загрузки и без ограничений.

SkyCiv предлагает инженерам широкий спектр программного обеспечения для структурного анализа и проектирования облачных вычислений. Как постоянно развивающаяся технологическая компания, мы стремимся внедрять инновации и улучшать существующие рабочие процессы, чтобы сэкономить время инженеров в их рабочих процессах и проектах.

Интенсивность нагрузки на фундамент при расчетах Калькулятор

Интенсивность нагрузки на фундамент при расчете по формуле

load_intensity = (Осадка в фундаменте * Коэффициент, зависящий от внутреннего трения) * (1+ (2 * Глубина опоры) / Ширина основания) + ((Осадка в основании * Коэффициент зависит от сцепления) / Ширина основания)

q = (P * C 1 ) * (1+ (2 * d) / B) + ((P * C 2 ) / B)

Что такое интенсивность нагрузки?

Фундаменты распределяют нагрузки надстройки на большую площадь, так что интенсивность нагрузки на ее основании (т.е. общая нагрузка, деленная на общую площадь) не превышает допустимую несущую способность грунта.

Как рассчитать интенсивность нагрузки на фундамент при расчетах?

Интенсивность нагрузки на фундамент при заданной осадке в калькуляторе используется load_intensity = (Осадка в фундаменте * Коэффициент, зависящий от внутреннего трения) * (1+ (2 * Глубина опоры) / Ширина опоры) + ((Осадка в фундаменте * Зависит от коэффициента на сцепление) / Ширина основания) для расчета интенсивности нагрузки. Формула интенсивности нагрузки на фундамент при заданной осадке определяется как нагрузка, приложенная на единицу площади почвы.Интенсивность нагрузки и обозначается символом q .

Как рассчитать интенсивность нагрузки на фундамент при расчете с помощью этого онлайн-калькулятора? Чтобы использовать этот онлайн-калькулятор для расчета интенсивности нагрузки на фундамент при заданной осадке, введите осадку в фундаменте (P) , коэффициент, зависящий от внутреннего трения (C 1 ) , глубину опоры (d) , ширину Основание (B) и Коэффициент, зависящий от когезии (C 2 ) и нажмите кнопку «Рассчитать».Вот как можно объяснить расчет интенсивности нагрузки на фундамент при заданном расчете с заданными входными значениями -> 0,084127 = (0,005 * 10) * (1+ (2 * 15) / 2) + ((0,005 * 10) / 2) .

Расчет нагрузок при проектировании колонн и фундаментов | Структурный дизайн

Как рассчитать общие нагрузки на колонну и соответствующее основание?

Эта статья написана по просьбе моих читателей. Студенты-инженеры обычно путаются, когда дело доходит до расчета нагрузок для конструкции колонн и опор.Ручной процесс прост.

Виды нагрузок на колонну
  1. Собственный вес колонны x Этажность
  2. Собственная масса балок на погонный метр
  3. Нагрузка на стены на погонный метр
  4. Общая нагрузка на плиту (статическая нагрузка + динамическая нагрузка + собственный вес)

Колонны также подвергаются действию изгибающих моментов, которые необходимо учитывать при окончательном проектировании. Лучший способ спроектировать хорошую структуру — использовать передовое программное обеспечение для проектирования конструкций, такое как ETABS или STAAD Pro.Эти инструменты намного опережают ручную методологию проектирования конструкций и настоятельно рекомендуются.

В профессиональной практике мы используем несколько основных допущений при расчетах нагрузок на конструкции.

Вы можете нанять меня для решения ваших задач по проектированию конструкций. Свяжитесь со мной.

Для колонн

Собственный вес бетона составляет около 2400 кг на кубический метр, что эквивалентно 240 кН. Собственный вес стали составляет около 8000 кг на кубический метр.Даже если предположить, что большая колонна размером 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составляет около 1000 кг на пол, что эквивалентно 10 кН. Поэтому в своих расчетах я предполагаю, что собственный вес колонны составляет от 10 до 15 кН на пол.

Для балок

Расчеты, аналогичные приведенным выше. Я предполагаю, что каждый метр балки имеет размеры 230 мм x 450 мм, исключая толщину плиты. Таким образом, собственный вес может составлять около 2.5 кН на погонный метр.

Для стен

Плотность кирпича колеблется от 1500 до 2000 кг на кубический метр. Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр, мы можем рассчитать нагрузку на погонный метр, равную 0,150 x 1 x 3 x 2000 = 900 кг, что эквивалентно 9 кН / метр. С помощью этой методики можно рассчитать нагрузку на погонный метр для любого типа кирпича.

Для блоков из автоклавного газобетона, таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до 700 кг на кубический метр.При использовании этих блоков для строительства нагрузка на стену на погонный метр может составлять всего 4 кН / метр , что может привести к значительному снижению стоимости строительства.

для плиты

Предположим, что плита имеет толщину 125 мм. Теперь каждый квадратный метр плиты будет иметь собственный вес 0,125 x 1 x 2400 = 300 кг, что эквивалентно 3 кН. Теперь предположим, что чистовая нагрузка составляет 1 кН на метр, а наложенная временная нагрузка — 2 кН на метр. Таким образом, мы можем рассчитать нагрузку на плиту примерно от 6 до 7 кН на квадратный метр.

Фактор безопасности

В конце, после расчета всей нагрузки на колонну, не забудьте добавить коэффициент запаса прочности. Для IS 456: 2000 коэффициент безопасности равен 1,5.

Вы можете использовать приложение RCC Column Design для расчета стали, необходимой для расчетной осевой нагрузки, используя этот метод.

Связанные

Онлайн-структурное проектирование

Бесплатно

Расчет закрепленной балки (дюймовые)
Расчет бесплатный, логин не требуется

Расчет внутренних сил балки (поперечная сила, изгибающий момент) и прогибов

имперский

луч

приколот

грузы

случаи нагрузки

силы

отклонение

Открыть расчетный лист

Бесплатно

Балка, фиксированная на обоих концах (дюймовые)
Расчет бесплатный, логин не требуется

Расчет внутренних сил балки (поперечная сила, изгибающий момент) и прогибов

имперский

луч

фиксированный

грузы

случаи нагрузки

силы

отклонение

Открыть расчетный лист

Бесплатно

Свойства сечения, вычислитель момента инерции
Требуется логин, расчет бесплатный

Расчет момента инерции для общего сечения

метрика

имперский

инерция

момент инерции

Открыть расчетный лист

Бесплатно

Расчет закрепленной балки (метрическая система)
Расчет бесплатный, логин не требуется

Расчет внутренних сил балки (поперечная сила, изгибающий момент) и прогибов

метрика

луч

грузы

случаи нагрузки

силы

отклонение

Открыть расчетный лист

Бесплатно

Балка, закрепленная на обоих концах (метрическая система)
Расчет бесплатный, логин не требуется

Расчет внутренних сил балки (поперечная сила, изгибающий момент) и прогибов

метрика

луч

фиксированный

грузы

случаи нагрузки

силы

отклонение

Открыть расчетный лист

Бесплатно

Расчет изолированного фундамента (дюймовая)
Расчет бесплатный, логин не требуется

Расчет максимального давления под фундамент

имперский

фундамент

опора

давление

Открыть расчетный лист

Бесплатно

Площадь арматурного стержня по номеру и размеру (дюймовая)
Расчет бесплатный, логин не требуется

Расчет площади армирования, имперские единицы

имперский

подкрепление

арматура

Общая площадь

Открыть расчетный лист

Бесплатно

Площадь арматуры по номеру и размеру (метрическая)
Расчет бесплатный, логин не требуется

Расчет площади армирования, метрические единицы

метрика

подкрепление

арматура

Открыть расчетный лист

Бесплатно

Допустимая нагрузка на балку RC (EC2)
Бесплатно, на ограниченный период, требуется логин

Расчет прочности на изгибающий момент железобетонной балки (Еврокод 2)

метрика

EC2

луч

конкретный

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Вместимость колонны RC (EC2)
Бесплатно, на ограниченный период, требуется логин

Расчет несущей способности железобетонной колонны и схема взаимодействия колонн (Еврокод 2)

метрика

EC2

столбец

конкретный

диаграмма взаимодействия

Открыть расчетный лист
Предварительный просмотр

Сила предварительного натяга и крутящий момент болта (EC3)
Требуется логин

Расчет предварительного натяга высокопрочных болтов, значения моментов затяжки болтов (Еврокод 3 и EN1090-2)

метрика

EC3

EN1090-2

болт

предварительная загрузка

крутящий момент

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Поверка опорной плиты (метрическая система)
Бесплатно, на ограниченный период, требуется логин

Расчет опорной плиты колонны и размера болтов (Еврокод 3)

метрика

EC3

опорная плита

болт

стали

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Расчет срезных выступов опорной плиты (дюймовые)
Бесплатно, на ограниченный период

Расчет глубины и толщины среза опорной плиты

имперский

срезной выступ

опорная плита

LRFD

AISC

стали

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Болтовое соединение (EC3)
Требуется логин, расчет бесплатный

Расчет допустимой нагрузки на болтовое соединение (Еврокод 3)

метрика

EC3

момент связи

стали

Открыть расчетный лист

Бесплатно

Прочность на изгиб стальной балки (дюймовая)
Бесплатно, на ограниченный период, требуется логин

Расчет прочности стальной балки на изгиб и поперечной устойчивости при кручении (AISC, LRFD)

имперский

луч

изгиб

стали

LRFD

AISC

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Стальной элемент жесткости подшипника балки (дюймовая)
Бесплатно, на ограниченный период

Проверьте требования к опорному элементу жесткости для стенок с сосредоточенными силами; Веб-локальная урожайность; Web Crippling; Боковое продольное изгибание полотна

имперский

луч

сеть

уступающий

калечащий

коробление

LRFD

AISC

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Диаметр балки (EC5)
Бесплатно, на ограниченный период, требуется логин

Расчет несущей способности деревянных балок, проверка деревянных элементов (Еврокод 5)

метрика

EC5

луч

древесина

изгиб

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Вместимость деревянной колонны (EC5)
Бесплатно, на ограниченный период, требуется логин

Расчет грузоподъемности деревянных колонн, проверка деревянных элементов (Еврокод 5)

метрика

EC5

столбец

древесина

изгиб

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Снеговая нагрузка на односкатную крышу
Бесплатно, на ограниченный период, требуется логин

Расчет снеговой нагрузки кровли на односкатных кровлях

метрика

снег

грузы

силы

крыша

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Снеговая нагрузка на скатную кровлю
Бесплатно, на ограниченный период, требуется логин

Расчет снеговой нагрузки на скатную крышу

метрика

снег

грузы

силы

крыша

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Многопролетная снеговая нагрузка
Бесплатно, на ограниченный период, требуется логин

Расчет снеговой нагрузки кровли на многослойных кровлях

метрика

снег

грузы

силы

крыша

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Базовое давление ветровой нагрузки
Бесплатно, на ограниченный период, требуется логин

Расчет эталонного давления ветровой нагрузки (Еврокод 1)

метрика

ветер

грузы

силы

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Коэффициент орографии ветровой нагрузки
Бесплатно, на ограниченный период, требуется логин

Расчет коэффициента орографии ветровой нагрузки (Еврокод 1)

метрика

ветер

грузы

силы

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Расчет бокового давления почвы (метрическая система)
Бесплатно, на ограниченный период, требуется логин

Расчет давления на грунт в активном, пассивном состоянии и в состоянии покоя для несвязных грунтов

метрика

активный

пассивный

почва

нагрузка

давление

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Расчет изолированного фундамента (метрическая система)
Бесплатно, на ограниченный период, требуется логин

Расчет максимального давления под фундамент

метрика

фундамент

опора

давление

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Расчет изолированного фундамента (дюймовая)
Бесплатно, на ограниченный период, требуется логин

Расчет максимального давления под фундамент

имперский

фундамент

опора

давление

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Расчет бокового давления почвы (брит.)
Бесплатно, на ограниченный период, требуется логин

Расчет давления на грунт в активном, пассивном состоянии и в состоянии покоя для несвязных грунтов

имперский

активный

пассивный

почва

нагрузка

давление

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Допустимая нагрузка на балку RC (ACI318)

Бесплатно, на ограниченный период, требуется логин

Расчет прочности на изгибающий момент железобетонной балки (ACI 318)

имперский

ACI318

луч

изгиб

конкретный

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Вместимость короткой стойки RC (ACI318)
Бесплатно, на ограниченный период, требуется логин

Расчет несущей способности железобетонных колонн и диаграмма взаимодействия колонн (ACI318)

имперский

ACI318

столбец

конкретный

диаграмма взаимодействия

Открыть расчетный лист
Предварительный просмотр

Бесплатно

Калькулятор веса стальных элементов (метрическая система)
Расчет бесплатный, логин не требуется

Расчет веса прямоугольных и круглых полых стальных профилей на метр

метрика

масса

стали

Открыть расчетный лист

Бесплатно

Давление на подушку оборудования (метрическая)
Требуется логин, расчет бесплатный

Расчет давления на подушку оборудования (метрическая система)

метрика

давление подушки

размер колодки

Открыть расчетный лист

Бесплатно

Простая балка — равномерно распределенная нагрузка
Расчет бесплатный, логин не требуется

Расчет сдвигов, моментов и прогибов для простой опорной балки при равномерно распределенной нагрузке

метрика

статика

грузы

силы

луч

Открыть расчетный лист

Бесплатно

Простая балка — сосредоточенная нагрузка в центре
Расчет бесплатный, логин не требуется

Расчет сдвигов, моментов и прогибов для простой опорной балки с сосредоточенной нагрузкой в ​​центре

метрика

статика

грузы

силы

луч

Открыть расчетный лист

Бесплатно

Простая балка — сосредоточенная нагрузка в любой точке
Расчет бесплатный, логин не требуется

Расчет сдвигов, моментов и прогибов для простой опорной балки, сосредоточенной нагрузки в любой точке

метрика

статика

грузы

силы

луч

Открыть расчетный лист

Бесплатно

Простая балка 2 Концентрированная симв.грузы
Расчет бесплатный, логин не требуется

Расчет сдвигов, моментов и прогибов для простой опорной балки, 2 сосредоточенных симметричных нагрузки

метрика

статика

грузы

силы

луч

Открыть расчетный лист

Бесплатно

Простая балка 2 Концентрированная симв.грузы
Расчет бесплатный, логин не требуется

Расчет сдвигов, моментов и прогибов для простой опорной балки, 2 сосредоточенных симметричных нагрузки

имперский

статика

грузы

силы

луч

Открыть расчетный лист

Бесплатно

Простая балка — равномерно распределенная нагрузка
Расчет бесплатный, логин не требуется

Расчет сдвигов, моментов и прогибов для простой опорной балки при равномерно распределенной нагрузке

имперский

статика

грузы

силы

луч

Открыть расчетный лист

Инженерные онлайн-калькуляторы и инструменты для работы с уравнениями Бесплатно

Для всех калькуляторов требуется браузер с поддержкой JAVA. Дополнительная информация

Примечание:

  • Многие ссылки сначала открывают веб-страницу уравнений. Найдите ссылку «Калькуляторы», чтобы открыть фактическое приложение калькулятора.

  • В настоящее время не все веб-страницы открыты для калькулятора, однако соответствующий калькулятор появится в ближайшем будущем.

  • Если у вас есть предложения по инженерному калькулятору, воспользуйтесь формой обратной связи Engineers Edge -> Отзыв

** СОВЕТ. Для поиска на этой веб-странице выберите «ctrl + F», затем введите ключевое слово во всплывающем окне.**


Меню структурных прогибов и напряжений

Уравнения и калькуляторы нагружения упругих каркасов на прогиб и противодействие для

Формулы реакции и прогиба и калькулятор для плоского нагружения упругих рам

Уравнения и калькуляторы прогиба и напряжения плиты

  • Калькулятор расчета консольной балки с фиксированным пальцем

Приложения общего назначения и математические калькуляторы

Формулы для круглых колец, момента, кольцевой нагрузки, радиального сдвига и деформации

  • Круговой кольцевой момент, кольцевая нагрузка и уравнения и калькулятор радиального сдвига # 21 Per.Формулы Роркса для формул напряжения и деформации для круглых колец Раздел 9, Справочная информация, условия нагружения и нагружения. Формулы моментов, нагрузок и деформаций и некоторых выбранных числовых значений. Кольцо вращается с угловой скоростью ω рад / с вокруг оси, перпендикулярной плоскости кольца. Обратите внимание на требование симметрии поперечного сечения.

Свойства сечения Выбранные формы

  • Конструктор цилиндрических зубчатых колес и сборок Конструктор цилиндрических зубчатых колес и сборок рассчитывает и моделирует отдельные прямозубые цилиндрические зубчатые колеса и сборку.Загрузки файлов доступны с премиум-аккаунтом.

Разработка и проектирование систем зубчатых передач и зубчатых передач

  • Преобразование шага зубчатого колеса Следующие диаграммы преобразуют размерные данные шага зубчатого колеса в следующее: Модуль диаметрального шага Круговой шаг
  • Уравнение фактора Льюиса Уравнение фактора Льюиса получается, если зуб рассматривается как простой кантилевер и контакт зуба происходит на кончике, как показано выше.
  • Формула проектирования шлицевого соединения Стандарт ISO 5480 применяется к шлицевым соединениям с эвольвентными шлицами на основе контрольных диаметров для соединения ступиц и валов..
  • Теплообменная техника

Калькуляторы для проектирования электротехники

IEEE 1584-2018 Уравнения и калькуляторы

Производство

Калькуляторы простых механических рычагов

Конструкция пружины

Уравнения и анализ трения

Гражданское строительство

Расчет напряжения / прочности при установке болта и резьбы

Тензодатчик

Анализ допусков с использованием геометрических размеров, допусков GD&T и других принципов

Дизайн управления движением

Сосуды высокого давления и конструкция цилиндрической формы Расчетные и инженерные уравнения и калькуляторы

  • Напряжение и прогиб цилиндра усеченного конуса за счет равномерного нагружения на горизонтальной проекционной площади; тангенциальная опора верхнего края.Уравнение и калькулятор. Пер. Формулы Роркса для напряжений и деформаций для мембранных напряжений и деформаций в тонкостенных сосудах высокого давления.

Жидкости

Допуск на изгиб листового металла

Пластиковая защелка

Конверсии, жидкости, крутящий момент, общие

Решения для треугольников / тригонометрии

Финансы и прочее.

Калькуляторы сварочного проектирования и инженерных данных Главное меню

Инженерная физика

Калькулятор бетона

Калькулятор бетона оценивает объем и вес бетона, необходимые для покрытия заданной площади. Покупка немного большего количества бетона, чем предполагаемый результат, может снизить вероятность недостатка бетона.

Плиты, квадратные опоры или стены

Отверстия, колонны или круглые опоры

Круглая плита или труба

Барьер для бордюров и водостоков

Лестница

Calculator RelatedVolume Calculator

Бетон — это материал, состоящий из ряда крупных заполнителей (твердых частиц, таких как песок, гравий, щебень и шлак), связанных с цементом.Цемент — это вещество, которое используется для связывания материалов, таких как заполнитель, путем прилипания к указанным материалам, а затем отверждения с течением времени. Хотя существует много типов цемента, портландцемент является наиболее часто используемым цементом и входит в состав бетона, раствора и штукатурки.

Бетон можно приобрести в различных формах, в том числе в мешках по 60 или 80 фунтов, или доставить в больших количествах специализированными автобетоносмесителями. Правильное перемешивание необходимо для производства прочного однородного бетона.Он включает в себя смешивание воды, заполнителя, цемента и любых желаемых добавок. Производство бетона зависит от времени, и бетон необходимо укладывать до того, как он затвердеет, поскольку он обычно готовится в виде вязкой жидкости. Некоторые бетоны даже предназначены для более быстрого затвердевания в тех случаях, когда требуется быстрое время схватывания. В качестве альтернативы, на некоторых фабриках бетон смешивают в сушильных формах для производства сборных железобетонных изделий, таких как бетонные стены.

Процесс затвердевания бетона после его укладки называется отверждением и представляет собой медленный процесс.Обычно для достижения более 90% окончательной прочности бетону требуется около четырех недель, а укрепление может продолжаться до трех лет. Обеспечение того, чтобы бетон был влажным, может повысить его прочность на ранних стадиях отверждения. Это достигается с помощью таких методов, как напыление на бетонные плиты составов, которые создают пленку поверх бетона, которая удерживает воду, а также за счет образования луж, когда бетон погружают в воду и оборачивают пластиком.

Расчет нагрузки на колонну, балку и плиту

Общий Lo ad Расчет на колонны, балки, перекрытия , мы должны знать о различных нагрузках, приходящих на колонну.Как правило, расположение колонн, балок и перекрытий можно увидеть в конструкции каркасного типа. В каркасной конструкции нагрузка передается от плиты к балке, от балки к колонне и в конечном итоге достигает фундамента здания.

Для расчета нагрузки здания необходимо рассчитать нагрузки на следующие элементы:


Что такое столбец

Колонна — это вертикальный элемент строительной конструкции, который в основном предназначен для восприятия сжимающей и продольной нагрузки.Колонна — один из важных конструктивных элементов строительной конструкции. В зависимости от нагрузки, поступающей на столбец, размер увеличивается или уменьшается.

Длина колонны обычно в 3 раза больше их наименьшего поперечного размера в поперечном сечении. Прочность любой колонны в основном зависит от ее формы и размеров поперечного сечения, длины, расположения и положения колонны.

Расчет нагрузки на колонну


Что такое Beam

Балка — это горизонтальный конструктивный элемент в строительстве, который предназначен для восприятия поперечной силы, изгибающего момента и передачи нагрузки на колонны с обоих концов.Нижняя часть балки испытывает силу растяжения и силу сжатия верхней части. Таким образом, в нижней части балки предусмотрено больше стальной арматуры по сравнению с верхней частью балки.


Что такое плита

Плита — это ровный конструктивный элемент здания, на котором предусмотрена ровная твердая поверхность. Эти плоские поверхности плит используются для изготовления полов, крыш и потолков. Это горизонтальный конструктивный элемент, размер которого может варьироваться в зависимости от размера и площади конструкции, а также может варьироваться его толщина.

Но минимальная толщина плиты указана для нормального строительства около 125 мм. Как правило, каждая плита поддерживается балкой, колонной и стеной вокруг нее.


Нагрузка на колонну, балку и плиту

1) Собственная масса колонны X Количество этажей

2) Собственная масса балок на погонный метр

3) Нагрузка стен на погонный метр

4) Общая нагрузка на плиту (статическая нагрузка + динамическая нагрузка + собственный вес)

Помимо указанной выше нагрузки, на колонны также действуют изгибающие моменты, которые необходимо учитывать при окончательном проектировании.

Наиболее эффективным методом проектирования конструкций является использование передового программного обеспечения для проектирования конструкций, такого как ETABS или STAAD Pro.

Эти инструменты представляют собой упрощенный и трудоемкий метод ручных расчетов для проектирования конструкций, который в настоящее время настоятельно рекомендуется в полевых условиях.

для профессионального проектирования конструкций, есть несколько основных допущений, которые мы используем при расчетах нагрузок на конструкции.

Подробнее : Как рассчитать количество стали для плиты


1.Расчет нагрузки на колонну (расчет конструкции колонны)

, мы знаем, что собственный вес бетона составляет около 2400 кг / м3, , что эквивалентно 240 кН, а собственный вес стали составляет около 8000 кг / м3.

Итак, если мы примем размер колонны 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составит около 1000 кг на пол, что id равно 10 кН.

  • Объем бетона = 0.23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414 x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10KN

При расчетах конструкции колонны мы предполагаем, что собственный вес колонн составляет от от 10 до 15 кН на пол.


2. Расчет балочной нагрузки

Мы применяем тот же метод расчета для балки.

мы предполагаем, что каждый метр балки имеет размеры 230 мм x 450 мм без учета толщины плиты.

Предположим, что каждый (1 м) метр балки имеет размер

  • 230 мм x 450 мм без плиты.
  • Объем бетона = 0,23 x 0,60 x 1 = 0,138 м³
  • Вес бетона = 0,138 x 2400 = 333 кг
  • Вес стали (2%) в бетоне = = 0,138 x 0,02 x 8000 = 22 кг
  • Общий вес колонны = 333 + 22 = 355 кг / м = 3.5 кН / м

Таким образом, собственный вес будет около 3,5 кН на погонный метр.


3. Расчет нагрузки на стену

известно, что плотность кирпича колеблется в пределах от 1500 до 2000 кг на кубический метр.

Для кирпичной стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр,

Нагрузка / погонный метр должен быть равен 0,150 x 1 x 3 x 2000 = 900 кг,

, что эквивалентно 9 кН / метр.

Этот метод можно использовать для расчета нагрузки кирпича на погонный метр для любого типа кирпича с использованием этого метода.

Для газобетонных блоков и блоков из автоклавного бетона, таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до 700 кг на кубический метр.

, если вы используете эти блоки для строительства, нагрузка на стену на погонный метр может быть всего 4 кН / метр , использование этого блока может значительно снизить стоимость проекта.

Расчет нагрузки на колонну


4.

Расчет нагрузки на перекрытие

Пусть, Предположим, плита имеет толщину 125 мм.

Таким образом, собственный вес каждого квадратного метра плиты будет

.

= 0,125 x 1 x 2400 = 300 кг, что эквивалентно 3 кН.

Теперь, если мы рассмотрим чистовую нагрузку, равную 1 кН на метр, а добавленную динамическую нагрузку, равную , 2 кН, на метр.

Итак, исходя из приведенных выше данных, мы можем оценить нагрузку на плиту примерно в от 6 до 7 кН на квадратный метр.


5. Фактор безопасности

В конце, рассчитав всю нагрузку на колонну, не забудьте добавить коэффициент запаса прочности, который наиболее важен для любой конструкции здания для безопасной и удобной работы здания в течение его расчетного срока службы.

Это важно, когда выполняется расчет нагрузки на колонну.

Согласно стандарту IS 456: 2000 коэффициент запаса прочности равен 1,5.

как рассчитать нагрузку на здание pdf скачать


Посмотреть видео: Расчет нагрузки на колонну


Часто задаваемые вопросы

Q.1 Как рассчитать нагрузку на балку?

Факторами, влияющими на общую нагрузку на балку, являются вес бетона и вес стали (2%) в бетоне.
Следовательно, Общий вес балки = Вес бетона + Вес стали .
Приблизительная нагрузка на балку размером 230 мм x 450 мм составляет около 3,5 кН / м.

Q.2 Как рассчитать нагрузку плиты на балку?

Обычно плита имеет толщину 125 мм. Таким образом, собственный вес каждого квадратного метра плиты будет равен произведению толщины плиты и нагрузки на квадратный метр бетона , которая оценивается примерно в 3 кН .
Учитывайте чистовую нагрузку и наложенную временную нагрузку,
Общая нагрузка на плиту составит около от 6 до 7 кН на квадратный метр .

Q.3 Как продолжить расчет нагрузки на стену?

Расчет нагрузки на стену:
1. Плотность кирпичной стены с раствором находится в диапазоне 1600-2200 кг / м3 .Таким образом, мы будем считать собственный вес кирпичной стены равным 2200 кг / м3
2. Мы будем рассматривать размеры кирпичной стены как: длина = 1 метр, ширина = 0,152 мм и высота = 2,5 метра, следовательно, объем стены = 1 м × 0,152 м × 2,5 м = 0,38 м3
3. Рассчитать статическую нагрузку кирпичной стены, которая будет равна, Вес = объем × плотность, Собственная нагрузка = 0,38 м3 × 2200 кг / м3 = 836 кг / м
4. Что равно 8,36 кН / м — это глухая кирпичная стена.

Q.4 Что такое столбец?

A Колонна — это вертикальный компонент строительной конструкции, который в основном предназначен для выдерживания сжимающей и продольной нагрузки . Колонна — один из важных конструктивных элементов строительной конструкции. В зависимости от нагрузки, поступающей на столбец, размер увеличивается или уменьшается.

Q.5 Как рассчитать статическую нагрузку на здание?

Расчет Статическая нагрузка для здания = Объем элемента x Удельный вес материалов.
Это делается путем простого вычисления точного объема каждого элемента и умножения на удельного веса соответствующих материалов , из которых он состоит, и статическая нагрузка может быть определена для каждого компонента.


Вам также может понравиться:

Связанные

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *