Расчет ростверка: Расчет свайного фундамента: простая и надежная методика

Содержание

Расчёт свайного ростверка для свайного фундамента, примеры, формулы

Долговечность и надежность свайного ростверка зависит не только от соблюдения технологии его монтажа, но и от правильных расчетов. Все полученные результаты проверки переносятся на проект, который передается строителям.

Основные правила расчёта свайного ростверка, формулы и СНИП нормативы, полная информация далее на странице.

Расчет свайного фундамента с ростверком

Для проведения расчетов такого плана следует обращаться к специалистам, специализирующихся в этом профиле. Перед этим проводятся геологические изыскания, позволяющие разработать проект, соответствующий почве на стройплощадке.

Совет эксперта! Если работы по геодезическому изысканию проведены не будут, то произвести точные расчеты основания с ростверком будет невозможно. Объясняется это тем, что несущая способность определяется только на основании силы сопротивления почвы.

 

Рис: Схема свайно-ростверкового фундамента

Для проведения изысканий на участке бурится отверстие в почве для ее пробы и анализа. Только потом можно проводить важные расчеты.

При разработке проекта учитываются такие параметры по сваям:

  • Глубина погружения.
  • Диаметр сваи.
  • Количество свай.
  • Схема их расположения.

По ростверку:

  • Форма ростверка (3 вида: высокий, повышенный, низкий).
  • Диаметр.
  • Устойчивость на изгиб и продавливание.
  • Метод армирования.

Рис: Схематическое положения ростверка свайного фундамента

Совет эксперта! Определить высоту ростверка следует исходя из веса будущего сооружения и уровня пучинистости грунта.

Как делается расчет

Существует 2 группы, благодаря которым происходит расчет свайного фундамента.

  • Прочность используемых материалов, несущая способность почвы и оснований.
  • Осадка вследствие трещин, нагрузки вертикальной и движения свай.

Процесс проектирования по указанным предельным выполняется при помощи следующих формул.

Устойчивость к продавливанию:

Устойчивость на изгиб:

Устойчивость к поперечным нагрузкам:

СНиП для проведения полного расчета свайного ростверка

За основу берется два СНиПа:

  • Для ростверка СНиП №2.03.01.
  • Для свай СНиП №2.17.77.

Совет эксперта! Соблюдение всех рекомендаций в СНиПе является обязательным условием.

Что учитывается при расчетах

Крайне важно учитывать такие аспекты:

  • Все предполагаемы нагрузки и воздействия по СНиПу.
  • Несущая способность опор и основания на основе особых и сочетаемых нагрузок.
  • Сочетание всех используемых материалов с почвой на стройплощадке. В этом случае берутся во внимание геодезические изыскания на предмет исследования почвы и динамических/статических испытаний ЖБИ свай. Опять же, в расчет берутся показания в СНиП.

  • Обращается внимание на тип свай, они могут быть висячими или стойки. Обязательно учитывается общий вес. Не менее важны и нагрузка воздушных масс.
  • В процессе расчетов, основание с ростверком представляет собой единой рамной конструкцией. Она должна воспринимать нагрузку по вертикали и горизонтали. Также изгибающая сила.
  • Если почва сложная (грунтовые воды очень высоко и тому подобное), а проектная нагрузка высокая, то учитывается негативная сила трения в процессе осадки строения.
  • Учитываются и другие немаловажные факторы при проектировании. Особенно те, которые непосредственно связаны с разными грунтами.

Пример расчета

Предлагаем рассмотреть пример расчета ростверкового фундамента на основе свай. Хотя в интернете есть множество подобных расчетов, если вы не имеете достаточного опыта в этом вопросе, то будет крайне сложно со всем разобраться. Хотя и так, лучше обращаться к профильным специалистам, но для общего понимания стоит узнать важные детали.

Так, учитываются при расчетах следующие данные:

  • Масса постройки. Чтобы получить конкретную и точную сумму массы, то необходимо сложить массу каждого элемента строения, а, в частности: стены, стяжка пола, стропильная система, кровля, перекрытия и прочее. Для определения этой суммы необходимо использовать средний показатель конкретного строительного материала.

Рис: Вес конструктивных элементов здания

  • Полезная нагрузка. В этом случае учитывается вся создаваемая нагрузка от мебели, отделки стен, бытовых приспособлений, количество проживающих человек и тому подобное. Согласно установленным нормам, на 1 м2 приходится нагрузки до 100 кг на перекрытие.

Совет эксперта! Определение полезной нагрузки происходит путем умножения площади перекрытия на 100 кг.

  • Снеговая нагрузка. Для этого используются данные и нормативы для конкретного региона страны. Полученную сумму необходимо умножить на площадь всей крыши.

Рис: Карта снеговых нагрузок РФ

  • Вся нагрузка на фундамент строения. В этом случае следует сложить всю массу будущего строения, нагрузку от снега в вашем регионе и полезную нагрузку. Полученный результат умножается на коэффициент надежности 1,2 (для жилого дома).
  • Грузонесущая способность ЖБИ свай. Подобные расчеты выполняются согласно следующей формуле на основании геологических изысканий:

  • Сколько будет опор и какая их длина. Для этого необходима информация обо всей предполагаемой нагрузке на будущее основание. Что касается длины, то она вычисляется, отталкиваясь от характера почвы. Всегда к полученному результату следует добавить 400 мм по длине.
  •  
  • Это позволит выполнить сопряжение ростверка со сваями. Что касается шага между опорами, то преимущественно шаг колеблется от 2 до 2,5 метров. Свая всегда устанавливается по углам и в местах соединения стен.

Рис: Схема заглубления ЖБ свай

  • Расчет ростверка. Итак, все расчеты выполняются согласно предоставленным формулам.

Совет эксперта! Помните, самостоятельно делать такие расчеты не рекомендуется, необходимо обращаться исключительно к профильным специалистам, которые имеют опыт в этом вопросе.

В большинстве случаев ростверк имеет сечение 400×300 мм. Для изготовления бетона используется цемент М200 и 300. Для армирования применяются прутья А2 и 1 Ø10-15 мм.

В нашей компании работает команда высококвалифицированных специалистов, которые обладают достаточным опытом по разработке свайного фундамента с ростверком. При этом учитываются все ГОСТы и СНиПы. За счет этого достигается высочайшее качество и надежность построенного строения.

Поможем с расчётами и работами по свайному фундаменту

Мы опытная компания по погружению железобетонных свай и шпунтов, с большим парком техники и большим количеством сданных объектов. Поможем Вам с возведением свайного фундамента любой сложности, примеры наших работ на фото. Видео наших работ. Ждём Вашего обращения по заявке:

Оставить заявку

Расчет ростверка свайного фундамента: смета, нагрузки

Расчет ростверка на продавливание

Любой проект свайно-ростверкового фундамента обязательно должен включать отдельный раздел с расчетом ростверка и сметой на строительство основания. Такие сметы делают люди, которые имеют высшее техническое образование, опыт и квалификацию. В проекте учитывается, к какой группе должен быть отнесен фундамент, а уже от группы зависит конечный расчет основания на продавливание.

Типы винтовых свай.

Что означает термин «продавливание»? Конструкция такого основания предусматривает наличие сплошного ростверка, под которым стоят сваи. На каждую сваю предусмотрена своя нагрузка, ее нужно учесть и рассчитать. Если нагрузка будет рассчитана неверно, тогда на одну сваю будет воздействовать слишком большая сила, а ростверк будет продавлен. А вместе с ним возможна деформация и самой сваи.

Расчет основания проводится по граничным состояниям 1 и 2 группы. К первой группе нужно отнести, в соответствии со строительными нормами, следующие параметры:

  • Прочность материалов, которые будут использоваться при производстве ростверка;
  • Особенности грунта, его несущие характеристики;
  • Нагрузка на основание при наличии нагрузок по горизонтали.

Забивка свай.

Ко второй группе относятся следующие показатели:

  • Наличие вертикальных нагрузок и их давление на ростверк;
  • Смещение, повороты несущих конструкций по горизонтали;
  • Наличие или появление трещин в проектируемом или существующем железобетонном свайном фундаменте.

Как правило, расчетную нагрузку на единичную сваю определяют с учетом равномерного распределения массы на все проектируемые сваи. Соответственно, ростверк при этом принимается как максимально жесткий.

Ростверки под колонны смежного расположения (расположение по соседству), а также аналогичные по конструкции и характеристикам ленточные фундаменты рассчитываются с учетом положений СНиП II-В.1-61 по ключевому предельному состоянию усилий. Но при этом определяются также и дополнительные нагрузки, которые могут возникать в процессе эксплуатации здания.

Также, при необходимости, проводится расчет по открытию трещин на основных и второстепенных свайных конструкциях. При расчетах не играет роли, ростверк с какими сваями проектируется — принцип расчета одинаковый для свай с круглым или квадратным сечением.

Схема армирования свайного ростверка.

Высоту ростверка на несущих железобетонных элементах рассчитывают по конкретным формулам. Как правило, минимальная высота должна составлять не менее 35 см, а ширина – от 45 см. Но это документальные данные, которые на практике существенно отличаются, а поэтому высоту расположения ростверка всегда рассчитывают практически, исходя от существующей на строительной площадке ситуации. Подошва ростверка принимается в пределах 300 мм или меньше, а высота плитной конструкции составляет 150 мм.

Стоит отметить, что форма будущего основания под свайный фундамент может напрямую зависеть от всех частей будущей постройки, количества используемых элементов, типа почвы и наличия грунтовых вод. Ведь проектировщик прекрасно понимает, что высота свай должна быть оптимальной, чтобы выдерживать нагрузки и от самого здания, и со стороны почвы.

Что нужно помнить при расчете свайно-ростверкового фундамента?

  1. Все нагрузки и возможные факторы влияния на сваи и ростверк таких оснований нужно учитывать, исходя из положений СНиПа. Значения, которые там указаны, нужно умножать на коэффициенты надежности, которые четко определены в «Правилах учета ответственности сооружений подобного типа в процессе проектирования зданий».
  2. Расчет ростверка проводится с учетом основной и осевой нагрузок, причем часто проектировщик сразу добавляет процент поправки в большую сторону с целью устранить дополнительные факторы риска.
  3. Также в расчете и при составлении будущей сметы на строительство основания нужно использовать существующие значения параметров почвы, а также приоритетных климатических условий в регионе.
  4. Нужно сразу учесть тип используемых свай.
  5. Проектировщик, который уже имеет достаточно опыта расчетов таких конструкций, принимает свайно-ростверковое основание как единую целую конструкцию и проводит расчет всего основания, а не каждого его элемента по-отдельности.
  6. Если на строительной площадке обнаружены проблемные почвы, плывуны или уже в проекте обнаружено наличие больших нагрузок на основание, тогда сразу нужно учесть все негативные факторы влияния. Также к сложным грунтам относятся почвы с высоким залеганием поверхностных вод.

Расчет конструкции на продавливание колонной из стали

Такой расчет используется только в тех случаях, когда предусматривается стальной монолитный ростверк. Как правило, его практикуют в промышленном строительстве. Где используются тяжелые материалы для возведения несущих стен и перекрытий. И в таких случаях в смете должны быть предусмотрены следующие расчеты:

  • Полный расчет на продавливание колоннами;
  • Расчет продавливания угловыми сваями;
  • Изгиб конструкции;
  • Локальное продавливание сталью.

Как правило, стальные ростверки отличаются сложностью в монтаже, ведь все элементы нужно сварить и затем проверить на прочность. Но в некоторых случаях только стальные материалы и помогут создать действительно прочное и надежное основание.

Расчет фундамента на изгиб

Многие строители не раз сталкивались с проблемой изгиба несущей конструкции через неверно подобранные материалы или ошибки в расчетах. Соответственно, смета уже никуда не годится, ее нужно оперативно переделывать и проводить новые расчеты. Поэтому в строительных нормах четко указано, что расчет на изгиб проводится только в сечении по грани колонны и по внешнему контуру ростверка.

Есть несколько методик расчетов на изгиб, но подбираются они в каждом конкретном случае индивидуально, исходя от внешних условий. Самый быстрый вариант – это суммирование всех моментов от реакций запроектированных свай, дополнительно учитываются локальные нагрузки.

Схема армированной сваи.

Но такая методика используется, если используются железобетонные сваи. А вот когда используется стальная свайная конструкция, тогда лучше брать методику расчета по сечению колонн. Также таким методом рассчитывается и необходимое количество, и допустимый максимальный диаметр арматуры.

Итог

Фактически, своими руками сделать правильный расчет таких специфических фундамента практически невозможно. Для этого нужно иметь не только строительное образование, но и огромный опыт работы строителем и проектировщиком.

Поэтому перед началом строительства дома лучше сразу попросить специалистов, чтобы они сами сделали рабочий проект будущего основания с указанными не только местами установки каждой сваи и ее допустимой длины и сечения, но и размеров ростверка. А тем более, что только специалисты четко укажут, из каких материалов лучше строить здание.

Калькулятор буронабивных свайных и столбчатых фундаментов





















Внимание! В настройках браузера отключена возможность «Использовать JavaSсript». Основной функционал сайта недоступен. Включите выполнение JavaScript в настройках вашего браузера.











Информация по назначению калькулятора


Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа, обязательно обратитесь к специалистам.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003


Свайный либо столбчатый фундамент – тип фундамента, в котором сваи либо столбы находятся непосредственно в самом грунте, на необходимой глубине, а их вершины связаны между собой монолитной железобетонной лентой (ростверком), находящейся на определенном расстоянии от земли. Главным отличием между столбчатым и свайным фундаментом является разная глубина установки опор.

Основными условиями для выбора такого фундамента является наличие слабых, растительных и пучинистых грунтов, а так же большая глубина промерзания. В последнем случаем и при возможности забивания свай при любых погодных условиях, такой вид очень актуален в районах с суровым климатом. Так же к основным преимуществам можно отнести высокую скорость постройки и минимальное количество земляных работ, так как достаточно пробурить необходимое количество отверстий, либо вбить уже готовые сваи с использованием специальной техники.

Существует различное множество вариаций данного типа фундамента, таких как геометрическая форма свай, материалы для их изготовления, механизм действия на грунт, методы установки и виды ростверка. В каждом индивидуальном случае необходимо выбирать свой вариант с учетом характеристик грунта, расчетных нагрузок, климатических и других условий. Для этого необходимо обращаться к специалистам, которые смогут произвести все необходимые замеры и расчеты. Попытки экономии и самостроя могут привести к разрушению постройки.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация

Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой справа.

Общие сведения по результатам расчетов

  • Общая длина ростверка

  • — Периметр фундамента, с учетом длины внутренних перегородок.

  • Площадь подошвы ростверка

  • — Соответствует размерам необходимой гидроизоляции.

  • Площадь внешней боковой поверхности ростверка

  • — Соответствует площади необходимого утеплителя для внешней стороны фундамента.

  • Общий Объем бетона для ростверка и столбов

  • — Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.

  • Вес бетона

  • — Указан примерный вес бетона по средней плотности.

  • Нагрузка на почву от фундамента в местах основания столбов

  • — Нагрузка на почву от веса фундамента в местах основания столбов/свай.

  • Минимальный диаметр продольных стержней арматуры

  • — Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения ленты.

  • Минимальное кол-во рядов арматуры ростверка в верхнем и нижнем поясах

  • — Минимальное количество рядов продольных стержней в каждом поясе, для предотвращения деформации ленты под действием сил сжатия и растяжения.

  • Минимальный диаметр поперечных стержней арматуры (хомутов)

  • — Минимальный диаметр поперечных и вертикальных стержней арматуры (хомутов) по СНиП.

  • Минимальное кол-во вертикальных стержней арматуры для столбов

  • — Количество вертикальных стержней арматуры на каждый столб/сваю.

  • Минимальный диаметр арматуры столбов

  • — Минимальный диаметр вертикальных стержней для столбов/свай.

  • Шаг поперечных стержней арматуры (хомутов) для ростверка

  • — Шаг хомутов, необходимых для предотвращения сдвигов арматурного каркаса при заливке бетона.

  • Величина нахлеста арматуры

  • — При креплении отрезков стержней внахлест.

  • Общая длина арматуры

  • — Длина всей арматуры для вязки каркаса с учетом нахлеста.

  • Общий вес арматуры

  • — Вес арматурного каркаса.

  • Толщина доски опалубки

  • — Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.

  • Кол-во досок для опалубки

  • — Количество материала для опалубки заданного размера.




Вопрос по расчету ростверка свайного фундамента

Сомневаюсь, ведь ростверк прогнется под ней между столбами… Поэтому хочется как то узнать и допустимые сечения ростверка, и его армирование (на нижнюю арматуру же нагрузка придется..) и минимально-приемлемое расстояние между столбами…

И для легких домов из ГБ, один этаж, и для тяжелых — 2 этажа, ЖБ перекрытия..

А один профессиональный проектировщик вообще высмеял такое решение: говорит, надо ростверк делать с как минимум 4 прутами арматуры сверху и 4 снизу, и ростверк должен быть не менее чем 50 шириной и 100-120 высотой… все остальное — не гост…


04-05-2016: Доктор Лом

По поводу расчета ростверка скажу так. С точки зрения строительной механики ростверк ни чем не отличается от любой другой балки, а вот сбор нагрузок на ростверк и выбор наиболее подходящей расчетной схемы — это уже отдельный вопрос.

Если ростверк будет монолитным или сборно монолитным с просчетом узлов сопряжения, то такой ростверк можно рассматривать как многопролетную нерарезную балку. В статье «Расчет монолитного ребристого перекрытия» рассматривается расчет подобной многопролетной балки. Соответственно сечение ростверка подбирается как минимум из конструктивных соображений (чтобы удобно было монтировать стеновые материалы), но и конечно же согласно расчету, возможно в вашем случае определяющим будет расчет по деформациям (определение максимального прогиба балки).

По поводу арматуры, она также принимается по расчету и в неразрезной балке должна быть и в верхней и в нижней зоне сечения. Конечно же, чем больше будет расстояние между сваями (пролеты неразрезной балки), тем большие размеры сечения и тем больший диаметр арматуры могут потребоваться.

Утверждения автора руководства по ТИСЭ не совсем верны, точнее говоря при недостаточно прочном ростверке стеновой материал нужно дополнительно проверять на прочность, рассматривая его как пластину-стену (кстати трещины в кирпичных домах даже и по ленточному фундаменту приходилось наблюдать неоднократно), хотя перераспределение нагрузок на ростверк после набора прочности кладочного раствора конечно же произойдет. Ну а мнение профессионального проектировщика скорее всего имеет отношение к проектированию ростверков для многоэтажных зданий при небольшом количестве свай.

Примерно так.

Расчет свайного фундамента v8.24 EXCEL 2010 и выше

v8.13 исправлен перебор загружений при расчете столбчатого фундамента
v8.14 откорректировано зануление расчетной нагрузки на сваю при расчете на продавливание угловой сваей. (при этом факторы отображались верно)
v8.15 исправлен баг некорректного отображения фактора прочности по наклонным сечениям.
v8.16 исправлен баг при расчете на продавливание ростверка из 1,2 свай.
v8.17 незначительные исправления в работе интерфейса программы.
v8.18 добавлен пункт: «показывать только те что используются в расчете»
v8.19 добавлен выбор уровня приложения нагрузки. Убран коэффициент перегрузки для угловой сваи = 1,2
v8.20 исправления в отчете
v8.21 добавлена возможность считать составные сваи.
v8.22 исправление орфографии.
v8.23 разблокировка отчета (что бы копировать содержимое).
v8.24 появление новых вкладок для легкого подсчета спецификаций

Преимущества:

— концепция «одного экрана» весь расчет на одном экране.

— не нужно вводить все характеристики грунтов (те характеристики что не используются в расчете затеняются

— возможность задать произвольный ростверк по координатам

— не требует лицензии, т.к. отчет — это имитация ручного расчета

— предупреждает о различных ошибках ввода данных

— несущая способность сваи указана отдельно под нижним концом и по каждому слою.

Возможности:

— определение несущей способности одиночной сваи (забивная, буровая, набивная) + ОТЧЕТ

— определение фактич. нагрузок на сваи в кусте + ОТЧЕТ

— расчет ростверка на продавливание колонной + ОТЧЕТ

— расчет ростверка на продавливание угловой сваей + ОТЧЕТ

— расчет по прочности наклонных сечений ростверков на действие поперечной силы + ОТЧЕТ

— расчет ростверка на изгиб (подбор арматуры в плитной части) + ОТЧЕТ

— подбор арматуры в подколоннике

— расчет свай на совместное действие вертикальной и горизонтальной сил и момента

— расчет осадки куста

— определение величины остаточного отказа от 1 удара.

Постараюсь ответить на все Ваши вопросы, а так же готов выполнять подобные расчеты на заказ.

группа VK https://vk.com/excel_gryzunov

Евгений Грызунов

[email protected]

Расчета свайного фундамента, столбчатого фундамента

Онлайн калькулятор по расчету буронабивных свайно-ростверковых и столбчатых фундаментов. Определение нагрузки на свайный фундамент.

Выберите тип ростверка:

Параметры ростверка:

Параметры столбов и свай:

Расчет арматуры:

Расчет опалубки ростверк:

Рассчитать

Результаты расчетов

Фундамент:

Общая длина ростверка: 0 м.

Площадь подошвы ростверка: 0 м2.

Площадь внешней боковой поверхности ростверка: 0 м2.

Общий объем бетона для ростверка и столбов (с 10% запасом): 0 м3.

Вес бетона: 0 кг.

Нагрузка на почву от фундамента в местах основания столбов: 0 кг/см2.

Расчет арматуры ростверка:

Расчет арматуры для столбов и свай:

Минимальный диаметр поперечной арматуры (хомутов): 0 мм.

Максимальный шаг поперечной арматуры (хомутов) для ростверка: 0 мм.

Общий вес хомутов: 0 кг.

Опалубка:

Минимальная толщина доски при опорах через каждый 1 метр: 0 мм.

Максимальное расстояние между опорами: 0 м.

Количество досок для опалубки: 0 шт.

Периметр опалубки: 0 м.

Объем досок для опалубки: 0 м3.

Примерный вес досок для опалубки: 0 кг.

Дополнительная информация о калькуляторе

Онлайн калькулятор монолитного буронабивного (свайного и столбчатого) ростверкового фундамента предназначен для расчетов размеров, опалубки, диаметра арматуры, ее количества и объема расходуемого бетона. Для определения подходящего типа конструкции фундамента обязательно проконсультируйтесь со специалистами.

Обратите внимание!
В расчётах используются нормативы, приведенные в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».

Данный тип фундамента основывается на сваях или столбах, поэтому его также часто называют столбчатым либо свайным. Глубина установки и несущая способность отличает сваи от столбов.

Вершины столбов или свай связывают между собой сплошной железобетонной лентой, так называемым ростверком. Между ростверком и поверхностью земли остаётся воздушная прослойка некоторой высоты.

Основная причина для выбора ростверкового фундамента – глубокое промерзание или слабость грунта. Этот тип фундамента востребован в местах, где из-за погодных условий другие виды фундамента создавать проблематично. Забивка свай не зависит от климата, что является несомненным преимуществом ростверковой технологии. Другой её плюс – высокая скорость возведения сооружений, поскольку сваи можно подготовить заранее, а их вбивание – ускорить, пробурив в земле отверстия.

На тип ростверкового фундамента влияет материал и форма свай, характер действия на грунт, способы установки и виды непосредственно ростверка. Трудно давать типовые рекомендации, не зная самого сооружения и специфики местности, где оно строится. Перед началом проектирования следует учесть климат местности, свойства грунта, расчётные нагрузки. Безусловно, лучше всего обратиться к специалистам и последовать их рекомендациям, так как есть риск «доэкономиться» до деформации или разрушения будущего строения. Чтобы этого избежать, советуем внимательно ознакомиться с данным калькулятором. Он поможет вам рассчитать расходы при возведении стандартных конструкций и обдумать составляющие будущего фундамента.

Вы можете задать вопрос или предложить идею по улучшению данного калькулятора. Будем рады вашим комментариям!

Пояснения к результатам расчетов

Общая длина ростверка

Внешний периметр ростверка, включая длину внутренних перегородок

Площадь подошвы ростверка

Площадь нижней поверхности ростверка, которая нуждается в гидроизоляции.

Площадь внешней боковой поверхности ростверка

Площадь наружной поверхности фундамента, которая нуждается в утеплении специальными материалами.

Общий объем бетона для ростверка

Суммарный объём бетона, нужный для полной заливки фундамента с обозначенными вами параметрами. При заказе бетона возьмите запас приблизительно в 10%. При заливке могут возникнуть уплотнения, ведущие к повышенному расходу, а доставка может привезти несколько меньший объём, чем вы заказали фактически.

Вес бетона

Примерный вес бетона, который понадобится вам для фундамента. Рассчитан для бетона средней плотности.

Нагрузка на почву от фундамента в местах основания столбов

Давление, которое фундамент оказывает на почву в основании свай или столбов.

Минимальный диаметр продольных стержней арматуры для ростверка

Рассчитывается с учётом содержания продольной арматуры в площади сечения ростверка и нормативов СНиП.

Минимальное количество рядов арматуры для ростверка

Количество стержней продольной арматуры в верхнем и нижнем поясах ленты ростверка, необходимое для предотвращения естественной деформации ленты силами растяжения и сжатия.

Общий вес арматуры

Вес арматурного каркаса.

Величина нахлеста арматуры

При креплении отрезков стержней внахлест следует использовать данное значение.

Длина продольной арматуры

Общая длина арматуры для всего каркаса (с учетом нахлеста).

Минимальное количество продольных стержней арматуры для столбов и свай

Число продольных стержней арматуры располагаемое в каждом столбе или свае.

Минимальный диаметр арматуры для столбов и свай

Предельный минимальный диаметр арматуры столбов, исчисляется в соответствии с нормативами СНиП.

Минимальный диаметр поперечной арматуры (хомутов)

Минимально допустимый диаметр поперечной арматуры в соответствии с нормативами СНиП исходя из заданных параметров.

Максимальный шаг поперечной арматуры (хомутов)

Максимальный шаг хомутов, при котором арматурный каркас будет должным образом выполнять свою функцию. Следует использовать данное значение, либо уменьшить шаг хомутов.

Общий вес хомутов

Общий вес хомутов, необходимых при строительстве фундамента.

Минимальная толщина доски опалубки (при опорах через каждый метр)

Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор. Опалубка рассчитывается для ростверка.

Количество досок для опалубки

Количество материала для опалубки заданного размера. За основу берется доска длиной 6 метров.

Периметр опалубки

Общий периметр опалубки для ростверка, включая внутренние перегородки.

Объем и примерный вес досок для опалубки

Требуемый объем пиломатериала для опалубки в кубических метрах и килограммах.

Калькулятор расчета свайного фундамента — онлайн расчет столбчатого фундамента

С помощью данного калькулятора можно произвести расчеты буронабивных свайно-ростверковых и столбчатых фундаментов. Расчет нагрузки на свайный фундамент.

Онлайн-калькулятор для расчета монолитного буронабивного ростверкового фундамента поможет рассчитать размеры фундамента, опалубки, диаметр и общую длину арматуры и объём расходуемого бетона. Перед началом проектирования здания с таким фундаментом обязательно проконсультируйтесь у специалистов, насколько оправдан такой выбор.

Расчеты данного калькулятора основываются на нормативах, приведенных в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».

Столбчатый и свайный фундамент – разновидности фундаментов, в которых используются столбы или сваи в качестве опор. Они погружаются в грунт на необходимую глубину, а их верхние части соединяются цельной железобетонной конструкцией (ростверком), которая не соприкасается с землёй. При столбчатом и свайном варианте ростверкового фундамента отличается глубина установки опор.

Ростверковая конструкция имеет смысл там, где грунт не пригоден для обычного размещения фундамента (слабый грунт, пучинистый, либо промерзающий на значительную глубину). Поскольку сваи забиваются при любых климатических условиях, ростверковый фундамент особенно актуален для регионов с низкими температурами и суровым климатом. Другие преимущества ростверковой технологии – высокая скорость возведения и низкая потребность в земляных работах. Достаточно пробурить отверстия и выполнить установку уже готовых свай.

Многие параметры ростверкового фундамента могут варьироваться. Это форма и материалы свай, способы действия на грунт, способы установки, форма ростверка. Каждый случай ростверкового фундамента должен учитывать расчётные нагрузки, климатические условия, специфику грунта и другие особенности местности и будущего сооружения. Чтобы уточнить все эти моменты, нужно провести необходимые замеры и расчёты, при необходимости – пригласить специалистов. Экономия на первоначальных расчётах может обернуться серьезными последствиями в будущем. Чтобы этого избежать, в первую очередь рекомендуем внимательно изучить данный калькулятор. В нем вы сможете определить будущие расходы и на примере стандартной конструкции определиться с составляющими планируемого фундамента.

Заполняя поля калькулятора, сверьтесь с дополнительной информацией, отображающейся при наведении на иконку вопроса .

Внизу страницы вы можете оставить отзыв, задать вопрос разработчикам или предложить идею по улучшению этого калькулятора.

Разъяснение результатов расчетов

Общая длина ростверка

Суммарный периметр фундамента, включая внутренние перегородки.

Площадь подошвы ростверка

Площадь нижней части ростверка, которая нуждается в гидроизоляции.

Площадь внешней боковой поверхности ростверка

Площадь боковых поверхностей наружной стороны фундамента, нуждающаяся в утеплении.

Объем бетона для ростверка и столбов

Общее количество бетона, которое понадобится для заливки фундамента заданных параметров. Фактическая потребность может оказаться выше из-за уплотнений при заливке, а объём фактически доставленного бетона может оказаться меньше заказанного. Поэтому рекомендуем заказывать бетон с 10-процентным запасом.

Вес бетона

Приблизительный вес бетона при средней плотности.

Нагрузка на почву от фундамента в местах основания столбов

При расчете берется во внимание полный вес конструкции.

Минимальный диаметр продольных стержней арматуры

Рассчитывается по нормативам СНиП. Учитывается относительное содержание продольной арматуры в сечении ленты ростверка.

Минимальное количество рядов арматуры ростверка

Для противодействия естественной деформации ленты ростверка под действием сил сжатия и растяжения, необходимо использовать продольные стержни в разных поясах ростверка (вверху и внизу ленты).

Общий вес арматуры

Вес стержней арматуры, вместе взятых.

Величина нахлеста арматуры

Для крепления стержней арматуры внахлёст, используйте данное значение.

Длина продольной арматуры

Общая длина арматуры включая нахлест.

Минимальное количество продольных стержней арматуры для столбов и свай

Необходимое количество продольных стержней арматуры для каждого столба или сваи.

Минимальный диаметр арматуры для столбов и свай

Минимально допустимый диаметр продольных стержней арматуры, обеспечивающих прочность столбов или свай.

Минимальный диаметр поперечной арматуры (хомутов)

Определяется, основываясь на нормативах СНиП.

Максимальный шаг поперечной арматуры (хомутов)

Рассчитывается таким образом, чтобы при заливке бетона арматурный каркас не был смещён или деформирован.

Общий вес хомутов

Суммарный вес хомутов, которые потребуются при строительстве всего фундамента.

Минимальная толщина доски при опорах через каждый метр

Необходимая толщина досок опалубки при заданных параметрах фундамента и заданном шаге опор. Рассчитывается исходя из ГОСТ Р 52086-2003.

Количество досок для опалубки

Число досок стандартной длиной 6 метров, которые потребуются для возведения всей опалубки.

Периметр опалубки

Общая протяженность опалубки с учетом внутренних перегородок.

Объем и примерный вес досок для опалубки

Такой объем досок потребуется для возведения опалубки. Вес досок рассчитывается из среднего значения плотности и влажности хвойных пород дерева.

РАСЧЕТ БАЛКОВ РЕЙКОВ В СУДОВЫХ КОНСТРУКЦИЯХ

CALCOLD DEI GRIGLIATI NELLE STRUTTURE NAVALI

Представлен метод расчета локальных напряжений двойного дна навалочных судов, основанный на исследовании сплошного ростверка, образованного донными ростверками различных трюмов (пролетов). С помощью некоторых гипотез о степени закрепления перекрытий, которые приводят к формуле и определению постоянных ростверков, характерных для каждого простого ростверка, достигается решение для неразрезной балки, образованной центральной балкой корабля и балкой. Таким образом, получают информацию о напряжениях изгиба и условиях ограничения на поперечных сторонах каждого пролета.Получив таким образом граничные условия для всех пролетов с помощью других констант, можно рассчитать напряжения на центральной балке и центральном перекрытии (центральном кресте) каждой опоры, которые обычно являются наиболее напряженными балками, или с помощью электронный компьютер, нагрузки на каждую балку. Приведены формулы изгибающих моментов на центральной балке в месте поперечных переборок и показаны некоторые формы расчета. В таблице приведены параметры для расчета постоянных, с помощью которых определяются напряжения сдвига и изгиба на балках центрального креста каждого двойного дна.Предложенная здесь методика расчета донных напряжений в навалочных судах может быть применена с соответствующими адаптациями к другим аналогичным конструкциям, таким как конструкции днища судов других типов, борта, палубы судов и т. Д. На итальянском

  • Корпоративных авторов:

    Registro Italiano Navale

    20 Via Vente Settembre
    Генуя,
    Италия
  • Авторов:

    • DeMaria, S
    • Squassafichi, N
  • Дата публикации: 1967-6

Информация для СМИ

Предмет / указатель терминов

Информация для подачи

  • Регистрационный номер: 00019322
  • Тип записи:
    Публикация
  • Агентство-источник: Registro Italiano Navale
  • Номера отчетов / статей: Tech Rpt
  • Файлы: TRIS
  • Дата создания:
    8 ноября 1971 г., 00:00

(PDF) Прочность судовых решеток при боковой нагрузке и сжатии в плоскости

Trans RINA, Vol 156, Part A3, Intl J Maritime Eng, июль-сентябрь 2014 г.

© 2014: Королевский институт военно-морских архитекторов A- 221

ПРОЧНОСТЬ СУДОВЫХ РЕЙКОВ ПРИ БОКОВОЙ НАГРУЗКЕ И В ПЛОСКОСТИ

СЖАТИЕ

(DOI No: 10.3940 / rina.ijme.2014.a3.293)

Локшин А.З., бывший профессор Санкт-Петербургского государственного морского технического университета, Россия, США, В.Г. Мишкевич,

AV Streamline, США, и Л.Д. Иванов на пенсии, ранее работал в США. Бюро судоходства, Хьюстон, США

РЕЗЮМЕ

В статье рассматривается прочность ростверка, нагруженного боковой нагрузкой и сжимающей нагрузкой в ​​плоскости (в одном направлении). Он

состоит из системы призматических балок, пересекающихся под углом 90 °. Сжимающая нагрузка воспринимается продольными балками

, упруго закрепленными на жестких опорах.Получена система агрегированных дифференциальных уравнений для решения задачи

методом Лагранжа. Это позволяет заменить систему агрегированных дифференциальных уравнений системой независимых дифференциальных уравнений

. Эти уравнения для случая одновременного действия боковой и продольной сжимающей нагрузки

имеют вид дифференциальных уравнений для изгиба призматических балок, лежащих на упругом основании

и нагруженных поперечными и продольными сжимающими силами.Когда существует только боковая нагрузка, форма этих уравнений

совпадает с формой дифференциальных уравнений для изгиба балок, лежащих на упругом основании и нагруженных

только боковой нагрузкой. Когда существует только продольная сжимающая нагрузка, форма этих уравнений совпадает с формой дифференциальных уравнений

для потери устойчивости балок, лежащих на упругом основании.

Даны решения по изгибу ростверка (первые две задачи).Получены формулы для расчета

параметров изгиба продольных балок при упругом закреплении концевых секций балок. Также выведены формулы

для расчета сил реакции в точках пересечения поперечных и продольных балок. Когда существует только продольная сжимающая нагрузка

(третья задача), дается решение для связи между коэффициентом упругой жесткости фундамента

и силой Эйлера. Результаты, полученные с помощью предлагаемого метода, сравниваются с расчетами FEA

.

НОМЕНКЛАТУРА

расстояние между поперечными балками

b расстояние между продольными балками

модуль упругости E

f площадь поперечного сечения балки

i0 момент инерции поперечной балки

J Момент инерции продольной балки

J ферма

км коэффициент жесткости упругого основания

L длина продольной балки

l длина поперечной балки

n количество продольных балок

Pm (x) основная функция прогиба

Q поперечная нагрузка на поперечную балку

q Распределенная поперечная нагрузка на ростверк

qm Распределенная поперечная нагрузка на продольную балку

0

м

q частное решение дифференциального уравнения

изгиб продольной балки

R сила реакции

T в плоскости действие силы сжатия ing на продольной балке

TE сила Эйлера

wi (x) кривая прогиба продольной балки

i коэффициент, представляющий влияние нагрузки

Q (x) на прогиб i-го стыка

поперечной ферма

Коэффициент ij, отражающий влияние силы реакции

j-го продольного на

прогиб i-го стыка поперечной балки

мкм

ν формы основного прогиба

коэффициент податливости упругой фиксации

Параметр m в зависимости от T и км

Параметр

m в зависимости от км

1.ВВЕДЕНИЕ

Объектом данного исследования является прочность ростверка, построенного

с ортогонально пересекающимися призматическими балками, покрытыми обшивкой

. Балки, параллельные оси OX (Рисунок 1), имеют

одинаковые моменты инерции и одинаковые граничные

условия (граничные условия могут быть любыми). Они

обозначены как «продольные», нагруженные сжимающей силой

. Балки, поперечные продольным (обозначенные как

«поперечные»), также имеют одинаковые моменты инерции, а

— одинаковые граничные условия (граничные условия

могут быть любыми).В статье рассматриваются ростверки с большим числом равноудаленных поперечин

(иногда их

обозначают как «основные направляющие лучи»).

Теория ростверков с продольными опорами, имеющими

различных моментов инерции, нагруженных только боковой нагрузкой

, была впервые разработана Бубновым И.Г. (1912). Он вывел

систему дифференциальных уравнений для изгиба таких типов

ростверков и предложил метод решения этих

уравнений.Расчеты по его методу были

сложными, и метод не применялся на практике.

В основе этих дифференциальных

уравнений лежат следующие допущения:

 Боковая нагрузка воспринимается только поперечинами.

 Направление силы реакции Rj в пересечении

точек продольных и поперечных

перпендикулярно плоскости ростверка.

Проектирование мостов | Учебное пособие по анализу ростверков для мостовых настилов в соответствии с британскими стандартами

Анализ ростверков мостовых настилов


1.Геометрия

Решетки

наиболее широко используются для анализа мостовых настилов балочного и плитного типа. Настилы типа цельных плит обычно моделируются с использованием конечных элементов, однако ростверки могут использоваться для настилов этого типа с достаточно точными результатами.

Продольные элементы ростверка расположены так, чтобы представлять главные балки, с поперечными элементами, представляющими плиту настила и диафрагменные балки.

Расстояние между поперечными элементами ростверка выбрано около 1.В 5 раз больше расстояния между основными лонжеронами, но может варьироваться в пределах 2: 1. Поперечные элементы требуются в положениях диафрагмы, и для получения элемента в середине пролета необходимо нечетное количество элементов.

В случае перекоса настилов поперечные элементы должны располагаться перпендикулярно основным элементам (см. Рис. 3), чтобы обеспечить правильную величину моментов и прогибов. Однако такое расположение может оказаться непрактичным при малых углах перекоса (ниже 35 o ), и обычно используется перекос сетки (см. Рис.2).
Скошенная сетка будет иметь тенденцию немного переоценивать величину моментов и прогибов и поэтому считается безопасным решением. Свойства сечения поперечных элементов в косых сетках следует рассчитывать с использованием ортогонального расстояния; ширина поперечного элемента на рисунке 2 составляет 1,641 м, а не 1,667 м.

Инерция изгиба и инерция кручения требуются для всех элементов в модели ростверка.Сечения элементов, представляющих настил на рисунке 1, показаны на рисунках 4 и 5 ниже.

Интервал изгиба композитных секций может быть рассчитан с использованием подходящей проформы. Электронную таблицу Excel с координатной геометрией можно скачать, щелкнув здесь. Свойства стержня для ростверка рассчитываются для локальной оси стержня, как показано, и необходимо следить за тем, чтобы вы использовали правильные обозначения.Если используется электронная таблица, то I xx из электронной таблицы будет введено как I y для показанной локальной оси элемента. Точно так же I yy из электронной таблицы будет введено как I z , а инерция кручения J будет введена как I x .

Аппроксимация инерции кручения элемента получается путем деления сечения на составляющие прямоугольники, как показано на рисунке 4.
Инерция кручения для прямоугольника определяется выражением J = k 1 b 3 b max
где:
b — длина короткой стороны
b max — длина длинной стороны
к 1 = {1-0.63 (b / b max ) (1-b 4 / 12b 4 max )} / 3

Торсионная инерция секции — это сумма инерций отдельных прямоугольников. Поскольку плита настила используется как в продольных элементах, так и в поперечных элементах, инерция этого прямоугольника уменьшается вдвое. Это относится только к инерции кручения, полное сечение используется для расчета инерции изгиба.

Калькулятор ниже можно использовать для проверки того, что инерция кручения продольного внутреннего элемента на рис.4 это:
J = (0,5 * 1864 + 4042 + 4613) * 10 6 = 9587 * 10 6 мм 4
Точно так же инерция кручения поперечного внутреннего элемента (плита настила 1641×185) на рисунке 5 составляет:
J = (0,5 * 3216) * 10 6 = 1608 * 10 6 мм 4

3. Кантилеверные пешеходные дорожки

Когда настил консольный от края балок главной палубы, удобно продлить ростверк до балки парапета, как показано на рис.1, 2 и 3. Это упростит применение нагрузки на пешеходные дорожки и случайной нагрузки на колеса.

Однако крутильные эффекты в краевой балке могут быть значительно переоценены для настила типа балки и плиты, если элементы не смоделированы правильно.
Большинство консольных эффектов должны вызывать изгиб плиты настила с вторичными скручивающими эффектами, возникающими в опорных краевых балках.
Если используется простой двухмерный (2D) ростверк, то изгибающим эффектам консоли будет противодействовать скручивание краевой балки.Это приведет к переоценке скручивания краевой балки и недооценке изгиба настила.
Некоторые программы ростверка позволяют центрирам стержней смещаться от 2D плоскости (как показано на рисунке 6). В качестве альтернативы можно использовать трехмерную модель, включив в нее жесткие вертикальные фиктивные элементы, хотя это решение действительно усложняет геометрию.

Большинство программ ростверка позволяют моделировать опоры свободными, жесткими или подпружиненными.Пружинные опоры используются для моделирования упругой деформации подшипника или опорной конструкции. Резиновые опоры деформируются под нагрузкой и существенно влияют на распределение нагрузки по палубе. Даже упругая деформация бетонных колонн может повлиять на распределение нагрузок в сплошном настиле.
Простой анализ линейного пучка даст приблизительную величину реакций. Это позволит подобрать подходящий подшипник для модели ростверка.В качестве альтернативы анализ ростверка может быть выполнен с жесткими вертикальными опорами и позже изменен.
Используя компоновку подшипников, показанную внизу веб-страницы «Выбор подшипников»:

  • «Свободные подшипники скольжения» будут фиксироваться или подпружиняться в вертикальном направлении, а расцепители применяются для направлений вращения.
  • «Неподвижный» подшипник будет зафиксирован или подрессорен во всех направлениях.

При использовании пружинных опор обычно приходится фиксировать один подшипник в вертикальном направлении для достижения стабильного решения.
Ростверк не анализирует нагрузку в плоскости, поэтому продольные или поперечные ограничения не моделируются.

Вся нагрузка пропорциональна элементам ростверка и стыкам (узлам) ростверка до расчета моментов, сдвигов и кручений. Многие программы имеют возможность прикладывать патч-нагрузки и точечные нагрузки, которые не обязательно совпадают с соединениями или стержнями. Программа распределяет эти нагрузки по элементам перед расчетом моментов, сдвигов и торсионных эффектов.

Есть несколько способов пропорционально распределить нагрузки на суставы, если в программе нет такой возможности. Показанная точечная нагрузка 48 кН, действующая в сетке из квадратов 600, может быть пропорциональна паре противоположных элементов, а затем снова соединениям, как показано. Это распределение позволит достичь достаточно точных результатов.

Удобно прикладывать все нагрузки к конструкции как номинальные. Коэффициенты нагрузки могут применяться к комбинированным случаям, чтобы избежать ввода множества загружений.Следовательно, загружения не должны быть слишком сложными. Например, конструкция проезжей части дороги толщиной 150 мм рассматривается в BD21 как 100-миллиметровое покрытие с 50-миллиметровым заполнением и должна применяться как два варианта нагружения, поскольку для насыпи применяются разные коэффициенты нагрузки, а не для покрытия.

К основным лонжеронам приложена статическая нагрузка. Некоторые программы автоматически создают статическую нагрузку, применяя плотность к площади поперечного сечения стержня. Необходимо соблюдать осторожность, чтобы избежать двойного учета веса плиты настила.
Накладываемая статическая нагрузка (покрытие проезжей части, покрытие и покрытие пешеходных дорожек и парапеты) вводятся как равномерно распределенные нагрузки по длине продольных элементов ростверка. В некоторых программах есть возможность прикладывать патч-нагрузки, которые можно использовать для наплавки, при условии, что она имеет постоянную толщину.

Динамическая нагрузка может состоять из нагрузки HA (udl + kel), нагрузки HB, пешеходной нагрузки, случайной нагрузки на колесо и ветровой нагрузки. Нагрузка на парапеты при столкновении включается только в том случае, если требуются парапеты с высокой защитой.Горизонтальные нагрузки, такие как тяговое усилие, торможение и занос, как правило, не учитываются, так как настил очень жесткий, чтобы выдерживать горизонтальные нагрузки по сравнению с вертикальными. Если платформа не имеет очень высокого виража или крутого продольного уклона, то составляющая нагрузки в вертикальном направлении для заноса и центробежных нагрузок будет незначительной.

Всегда рекомендуется проводить приблизительную проверку вывода по мере выполнения задания. Одна простая проверка состоит в том, чтобы получить общие реакции для каждого варианта нагружения, чтобы увидеть, согласуются ли они с оценкой общей нагрузки, приложенной для каждого варианта нагружения.
Также простой анализ линейных балок даст приблизительные моменты и сдвиги, которые можно сравнить с результатами для ростверка.
Таблицу Excel с использованием распределения моментов для выполнения анализа линейной балки можно загрузить, щелкнув здесь.

Сравнение расчета балочной ростверки с расчетом с использованием ортотропных пластин

Изображение 01 — Автомобильный мост через L55 возле Шварцхайде, Германия

Например, [2] часто рекомендует определять балочный ростверк.Ростверк очень хорошо отображает двухосное структурное поведение бетонной плиты из композитной балки. Однако в этом случае требуется больше усилий по моделированию, и ростверк неточен в локальных дискретных точках. Ниже моделирование балочного ростверка сравнивается с моделированием ортотропной плиты.

Изображение 02 — «Редактировать жесткость поверхности — ортотропия» в RFEM

Сначала описывается определение балочного ростверка с использованием простой конструкции, а затем определяется ортотропная пластина.Наконец, объясняются результаты и отклонения.

Система

Изображение 03 — Структурная система

  • Сталь с поперечным сечением: HE-A 200
  • Сталь с поперечным сечением: S235
  • Бетон с поперечным сечением: d = 100 мм
  • Материал бетон: C30 / 37
  • Нагрузка: 5 кН / м²

Изображение 04 — Поперечное сечение, включая эффективную ширину

Составное поперечное сечение создается в SHAPE-MASSIVE и импортируется в RFEM с заданным эксцентриситетом поперечного сечения относительно бетонной плиты.Эффективная ширина поперечного сечения принята 60 см. Центр тяжести поперечного сечения немного смещен вверх на 0,8 см к стыку между бетоном и сталью. Поэтому стык опор учитывается. Опоры смещены вниз на 5 см.

Изображение 05 — Поддержка позиционирования

Сама схема опоры подобрана таким образом, чтобы не возникало ограничений из-за сдерживаемой деформации.

Нагрузка одинакова для обеих систем.

  • LC1 = 5 кН / м²
  • LC2 = 10 кН (направление x = середина пролета, направление y = внешний край)

Изображение 06 — Вариант нагружения 2

Конструкция балочного ростверка

Требования к балочному ростверку (из [1]):

  • постоянная высота конструкции
  • мост с прямой балкой
  • простое симметричное поперечное сечение
  • Обе основные балки поддерживаются на каждой опорной оси, которая перпендикулярно продольной оси моста.
  • приблизительно жесткая поперечная распорка в опорных осях
  • неограниченная деформация в опорных осях
  • Программа проектирования конструкций для расчета фермы должна иметь возможность рассчитывать элементы стержня.

Расчетное значение жесткости на изгиб (из [2]):

Формула 1

(EI) I = EcIPlatte = Ec · b · d³12 · (1 — μ²) = 3,300 · 120 см · (10 см) ³12 · 0,8 = 20,6 · E06 кНсм²

Расчетное значение жесткости на кручение:

Формула 2

(GIT) I = k · (GIT) Gc = Ec2 · (1 μ) = 3.3002 · (1 0,2) = 1,375 кНсм²

Характеристики поперечного сечения:

  • I T = 0 см 4
  • I y = 6250 см 4
  • A = 1000 см²
  • A y = 833 см²

ввод осуществляется в программе с использованием свойств действующего сечения. Учитывается жесткость элементов на сдвиг.

Ортотропная пластинчатая конструкция

В ортотропной пластинчатой ​​конструкции основные балки моделируются таким же образом, как и в балочном ростверке.Затем эти балки встраиваются в бетонный фланец. Жесткость полностью передается главными балками в продольном направлении и бетонной полкой в ​​поперечном направлении. Размер ячейки FE определяется идентично расстоянию до вторичной балки в 50 см.

Матрица жесткости ортотропной пластины симметрична и применяется только к главным диагоналям. Жесткости на изгиб в продольном направлении плиты и кручение определены идентично поперечным стержням балочного ростверка с почти нулевым значением.

Расчетное значение жесткости на изгиб:

Формула 3

D22 = Ec · d³12 · (1 — μ²) = 206,000 кНсм / см

Расчетное значение жесткости на кручение:

Формула 4

D33 = Gxy · dx3 · dy312 = 13,8 кНсм / см

В программе данные вводятся с использованием значений жесткости, определенных пользователем.

Изображение 07 — Матрица жесткости плоскости плиты

Заключение

Изображение 08 — Сравнение результатов

Изображение 09 — Деформации при нагружении 2

Литература
[1] Unterweger, H.: Globale Systemberechnung von Stahl- und Verbundbrücken, Modellbildung und Leistungsfähigkeit verbesserter einfacher Stabmodelle. Грац: IBK при Технологическом университете Граца, 2007
[2] Standsicherheitsnachweise für Kunstbauten: Anforderungen an den Inhalt den Umfang und die Form. Бонн-Бад-Годесберг: Федеральный министр транспорта, Департамент дорожного строительства, 1987

Моделирование и анализ балочных мостов

Большинство автомобильных мостов представляют собой балочные конструкции, либо однопролетные, либо неразрезные, а композитные мосты состоят из либо многобалочная, либо лестничная форма настила.Определение основных эффектов различных комбинаций нагрузок часто может быть достигнуто с помощью 2-мерной аналитической модели, но для более полного анализа необходима 3-мерная модель.
В этой статье рассматриваются соответствующие методы анализа и моделирования типичных мостов из стали и композитных материалов в Великобритании.

 

Полная конечно-элементная модель

[вверху] Варианты моделирования типичного многолучевого моста

 

Типичный многобалочный мост из стального композитного материала
Овербридж Тринити на A120
(Изображение любезно предоставлено Аткинсом)

Существует три варианта моделирования типичного многобалочного стального композитного моста:

Линейный луч — довольно грубый инструмент.Он не учитывает поперечное распределение, он не дает результатов для поперечного дизайна (например, плиты или распорки) и не учитывает эффекты перекоса. Его не рекомендуется использовать для детального проектирования, но это полезный инструмент для предварительного проектирования.

Использование ростверка подходит во многих ситуациях. Использование модели конечных элементов даст более подробные результаты, особенно для неоднородных балок.

Хотя анализ ростверка широко используется и по-прежнему считается наиболее подходящим для большинства мостовых настилов, признано, что программы анализа методом конечных элементов становятся все более доступными и более простыми в использовании.Кроме того, требования Еврокода для проверки бокового продольного изгиба при кручении могут сделать анализ продольного изгиба методом конечных элементов важным для проверки случая нагрузки мокрой бетонной конструкции.

 

Поперечное сечение моста Тринити

[вверх] Анализ ростков

[вверх] Анализ ростков: обзор

 

Изометрический вид ростверка, представляющего собой настил балки

Модель ростверка — это обычная форма расчетной модели для композитных мостовых настилов.Его ключевые особенности:

  • Это 2D модель
  • Конструктивное поведение линейно-упругое
  • Элементы балки выложены сеткой в ​​одной плоскости, жестко соединены в узлах
  • Продольные элементы представляют собой составные секции (т. Е. Главные балки с соответствующей плитой)
  • Поперечные элементы представляют собой только плиту или составное сечение, в котором присутствуют поперечные стальные балки

[вверх] Анализ ростверка: план элемента

Предлагается следующее руководство по выбору планировки ростверка:

  • Сохраняйте размеры сетки примерно квадратными
  • Используйте четное количество шагов сетки
  • Шаг сетки не более пролета / 8
  • Кромки вдоль парапета для облегчения приложения нагрузки
  • Вставьте дополнительные стыки для мест сращивания (обычно предполагается, что это 25% пролета от опор)

Для двухпролетного моста, как показано выше, подходящая компоновка будет такой, как показано ниже.

 

Типовая схема ростверка для двухпролетного многобалочного стального композитного моста

[вверх] Анализ ростверка: поэтапное применение загрузки

Потребуются как минимум три разные модели ростверка для моделирования реакции конструкции на диапазон постоянных и переменных воздействий:

  • Модель «только из стали» : собственный вес стальных балок и вес влажного бетона во время строительства применяются к модели ростверка только из стали.Продольные элементы представляют собой только стальные балки, в то время как поперечные элементы обычно не нужны (они могут быть установлены как «фиктивные» элементы, чтобы сохранить то же расположение модели, что и составные модели).
  • «Долговременная» композитная модель : Постоянные воздействия, прикладываемые к завершенной конструкции (в основном, наложенные постоянные нагрузки, такие как покрытие поверхности, и ограничение кривизны из-за усадки), применяются к долговременной композитной модели. Характеристики сечения продольных составных элементов и поперечных элементов, представляющих плиту, рассчитываются с использованием длительного модуля упругости бетона.Если плита находится в состоянии растяжения, могут потребоваться свойства сечения с трещинами.
  • «Кратковременная» составная модель : Переходные воздействия (в основном вертикальные нагрузки, вызванные движением транспорта) применяются к краткосрочной составной модели. Свойства сечения рассчитываются так же, как и для долгосрочной модели, но с использованием краткосрочного модуля упругости. Опять же, свойства сечения с трещинами могут потребоваться там, где плита находится в состоянии растяжения.

Обратите внимание, что BS EN 1992-1-1 [1] дает несколько иной долгосрочный модуль упругости бетона при усадочной нагрузке, поэтому теоретически должна быть четвертая модель для анализа эффектов усадки.Однако модуль существенно не отличается от «обычного» долгосрочного значения, и разумно применить удерживающие моменты усадки к долгосрочной модели для определения вторичных моментов в балках. Однако соответствующие свойства сечения для усадки следует использовать для расчета напряжений, вызванных этими эффектами.

[вверх] Анализ ростков: свойства сечения

 

Свойства трансформируемого сечения элемента составной балки ростверка

Обычно все свойства сечения в «стальных элементах» рассчитываются с использованием преобразованной площади бетонного фланца (разделить на коэффициент модульности n = E s / E c ).Следующие свойства сечения необходимы для каждого отдельного сечения:

  • Только сталь: только свойства стальной балки
  • Долговечный композит: бетонная поверхность, преобразованная для долговременного модульного соотношения
  • Краткосрочный композит: бетонная поверхность, преобразованная для кратковременного модульного соотношения
  • Свойства с трещинами (в областях забивания): площадь армирования принимается как эффективная только в сечении плиты.

Для свойств сечения без трещин армирование в плите может игнорироваться.

Типичный преобразованный разрез показан справа.

[вверх] Степень растрескивания

Если отношение длин соседних пролетов составляет не менее 0,6, поправка на растрескивание плиты в зонах коробления может быть сделана путем использования свойств сечения с трещинами для 15% пролета с каждой стороны промежуточных опор, как показано ниже. Это предусмотрено BS EN 1994-2 [2] , пункт 5.4.2.3.

 

Степень трещиностойкости элементов балки

[вверх] Задержка сдвига в бетонных полках

Эффективная ширина бетонных полок основана на ширине плиты, равной L e /8 за пределами внешней стойки, по обе стороны от балки, где L e — это расстояние между точками обратного прогиба.Это определение дано в BS EN 1994-2 [2] , пункт 5.4.1.2, где приведены приблизительные значения L e . Обратите внимание, что запаздывание сдвига необходимо учитывать как при ULS, так и при SLS (одинаковая эффективная ширина используется для обоих предельных состояний).

[вверх] Анализ ростверка: приложение нагрузок

Остаточные воздействия (собственный вес) распределяются между продольными стержнями с помощью простой статики. Графическое изображение типичных постоянных нагрузок, приложенных к модели ростверка, показано ниже (слева).

Загрузка трафика обычно определяется с помощью программ «автозагрузки», которые являются частью большинства аналитических программ. Эти программы используют поверхности влияния для определения степени равномерно распределенных нагрузок и положения тандемных систем и специальных транспортных средств. Типичная поверхность влияния для места изгиба в середине пролета показана ниже (справа).

Пользователь решает, какие положения на модели наиболее важны для проектирования (например, промежуточные участки, стыки и положения опор), и требует, чтобы для этих положений были созданы поверхности влияния; затем автопогрузчик определяет позиции, в которых
применяется для наиболее обременительного эффекта.

  • Графическое изображение постоянных нагрузок, приложенных к модели

  • Типичная поверхность воздействия изгибающего момента в середине пролета двухпролетного четырехбалочного моста

[вверх] Анализ ростков: выход

Основная цель любого глобального анализа мостов — получение результатов, которые затем можно использовать при анализе и проектировании сечений. Обычно на выходе будут изгибающие моменты, поперечные силы и крутящие моменты (если они значительны) в главных балках.Прогибы также потребуются для расчетов из преамбула. Результат, вероятно, будет либо графическим, либо табличным, оба полезны. Графический вывод позволяет быстро установить на глаз пиковые моменты и сдвиги, а также позволяет проектировщику визуально проверить, ведет ли модель себя так, как ожидалось. Табличный вывод может быть полезен для постобработки в виде электронной таблицы и одновременного чтения сопутствующих эффектов нагрузки. Однако проектировщику следует принимать решения о том, где находятся критические места в конструкции, чтобы избежать чрезмерного количества выходных данных и постобработки.

  • Типовое графическое представление вывода изгибающего момента

  • Типичный результат анализа влияния нагрузки на ростверк

[вверх] Анализ ростков: прочие соображения

 

Графический вывод изгибающих моментов в элементах плиты ростверка модели

Также необходимо учитывать следующее:

  • Глобальные эффекты для конструкции поперечной плиты : возьмите эффекты нагрузки на поперечные элементы из модели ростверка и добавьте к эффектам из локального анализа (например,грамм. Диаграммы Пучера. См. SCI 356). Любые нагрузки, приложенные к ростверку, следует прикладывать к швам только для этой цели, чтобы избежать неточного двойного учета местных эффектов.
  • Распорка : Распорка обычно моделируется с помощью гибкого на сдвиг элемента (консервативно для использования элемента, который не допускает гибкости при сдвиге) с эквивалентными свойствами, рассчитанными на основе модели плоского каркаса. Модель плоской рамы также может использоваться для расчета распорок с использованием отклонений от модели ростверка, приложенных к модели плоской рамы, и при необходимости удерживающих сил.
  • Опоры : Все опоры обеспечивают только вертикальное ограничение в 2D ростверке. Влияние невертикальных нагрузок необходимо оценивать вручную или с помощью альтернативной модели.
  • Ручные проверки : Ручные проверки должны проводиться для проверки модели, например, проверка изгибающих моментов при равномерной нагрузке и проверка опорных реакций
  • Комбинированное программное обеспечение для глобального анализа и проектирования сечений : Некоторое программное обеспечение предлагает комбинированный общий анализ и возможность проектирования сечений.Проектировщики должны убедиться, что они понимают теорию, лежащую в основе проектирования секций балки, и проводить проверки на выходе.
 

Плоская модель каркаса для оценки жесткости (для элемента модели ростверка) и для определения эффектов от смещений из выходного

[вверх] Анализ ростков: варианты

[вверх] Мосты косые

Многие мосты имеют перекос в плане, и модель ростверка может приспособиться к этому расположению одним из нескольких способов.Рассмотрим типичный план косого моста, показанный ниже.

 

Для малых углов перекоса сетку можно выровнять с перекосом, как показано ниже.

 

перекос сетки (перекос не более 20 °)

Для больших углов перекоса поведение элементов перекоса становится неточным, и лучше вернуться к ортогональной сетке.На концах необходимо компенсировать перекос.

 

Ортогональная сетка для большего перекоса. (наклон более 20 °)

[вверх] Изогнутые мосты
 

Типовой изогнутый композитный мост

Это относительно обычное явление для мостов на развязках с разнесенными уровнями и в других местах, где пространство ограничено, чтобы иметь значительную кривизну в плане.

В таких ситуациях могут использоваться изогнутые ростверки, хотя при выборе компоновки и рассмотрении результатов анализа необходимо соблюдать осторожность, поскольку крутильные эффекты в плите нелегко отделить от эффектов коробления в стальных балках. Кроме того, влияние горизонтальных «радиальных» сил в стальных фланцах необходимо будет добавить после анализа ростверка.

 

Модель изогнутого ростверка для 4-пролетного моста

[вверх] Балки переменной глубины

Балки переменной глубины, такие как показанные ниже, можно легко разместить в модели ростверка путем изменения свойств сечения по длине продольных элементов.

 

Балки переменной глубины в двухпролетном мосту
(Изображение любезно предоставлено Аткинсом)

[вверху] Лестничные настилы
 

Лестничный мостик (этап строительства, со спусковой головкой)

Лестничные настилы, подобные показанному справа, можно смоделировать с помощью ростверков.

В модели ростверка для лестничной площадки:

  • Основные лонжероны представляют собой сплошное составное сечение
  • Промежуточные лонжероны представляют собой только плиту
  • Поперечные элементы обычно представляют собой составное сечение, включая поперечные балки.Иногда могут быть включены только промежуточные элементы плиты между композитными поперечными элементами.

Вероятно, потребуется 3D-модель для моделирования взаимодействия между поперечными балками и главными балками, в частности, для определения жесткости U-образной рамы и воздействия на поперечные балки из-за местного применения специальных транспортных средств.

 
 

Трехмерная модель лестничного настила для взаимодействия поперечных балок и главных балок

[вверх] Мосты интегральные

Для интегрального моста можно использовать двухмерный ростверк с вращающимися пружинными опорами на встроенных опорах в сочетании с двухмерной моделью плоской рамы для температурных воздействий.В качестве альтернативы можно использовать 3D-модель с участком ростверка для настила и вертикальными участками для примыкания и фундамента.

[вверху] Расчет критического изгиба на упругость для грузовой платформы «мокрый бетон»

 

Голые стальные балки в ожидании загрузки мокрого бетона

BS EN 1993-2 [3] не дает формулы для определения гибкости при продольном изгибе при кручении парных стальных балок с торсионным креплением, когда пара балок подвержена изгибу как пара в согласии друг с другом, а не между ограничениями. .Это обычный сценарий для мокрой загрузки бетона. Можно рассмотреть два варианта:

  • Расчет гибкости с использованием анализа критического продольного изгиба на упругость КЭ
  • Используйте упрощенные правила для гибкости ограничений на кручение, взятые из BS 5400-3 [4] (они доступны в формате Еврокода в SCI P356).

Для анализа КЭ пользователю необходимо просмотреть режимы продольного изгиба, чтобы найти режим продольного изгиба при кручении — можно обнаружить, что режимы продольного изгиба стенки или полки возникают раньше, чем поперечные изгибы при кручении.

КЭ-анализ, вероятно, даст значительные преимущества по сравнению с упрощенным подходом, который обсуждается при проектировании балки.

Дальнейшие инструкции по определению сопротивления продольному изгибу балок из стальных листов в композитных мостах во время строительства (голая стальная ступень) и в эксплуатации (когда плита настила действует как верхний фланец) доступны в ED008.

[вверх] Конечно-элементное моделирование

Поскольку вполне вероятно, что для проверки упругой критической потери устойчивости потребуется модель конечных элементов, можно рассмотреть возможность использования полной модели конечных элементов для всего анализа.Это также будет иметь то преимущество, что структурный отклик потенциально лучше моделируется. Однако есть ряд недостатков, в том числе:

 

Полная конечно-элементная модель

  • Более длительная установка
  • Больше шансов на ошибку
  • Больше времени для извлечения результатов
  • Для уверенного использования требуется больше практики
  • Отладка сложнее
  • Пиковые опорные моменты могут быть недооценены

Если принято решение об использовании конечно-элементной модели, могут помочь следующие рекомендации:

  • Грубая сетка, вероятно, будет достаточной
  • Держите сетку как можно более квадратной
  • Требуется более тщательное планирование
  • Толстые элементы оболочки для балок и плит, балочные элементы в других местах (например,грамм. для распорки)
  • В качестве альтернативы можно использовать балочные элементы для составных пластин для стальных балок
  • Требуется дополнительная проверка
  • Необходимые анизотропные свойства в областях с трещинами

[вверх] Выводы

Ростверк — это обычно используемая модель для настилов мостов, и она относительно проста в использовании. Тем не менее, модель конечных элементов, скорее всего, по-прежнему потребуется для анализа упругого критического продольного изгиба стальных балок, поддерживающих влажную нагрузку бетона.Следовательно, модель конечных элементов может быть рассмотрена для всего анализа, что также будет иметь возможное преимущество в виде лучшего моделирования отклика конструкции. Однако у этого подхода есть некоторые недостатки, поэтому многие проектировщики используют ростверк для основного анализа и используют модель конечных элементов только там, где это абсолютно необходимо.

[вверх] Список литературы

  1. ↑ BS EN 1992-1-1: 2004 + A1: 2014 Еврокод 2. Проектирование бетонных конструкций. Общие правила и правила для зданий, BSI
  2. 2.0 2,1 BS EN 1994-2: 2005, Еврокод 4. Проектирование композитных стальных и бетонных конструкций. Общие правила и правила для мостов, BSI
  3. ↑ BS EN 1993-2: 2006, Еврокод 3. Проектирование стальных конструкций. Стальные мосты, BSI
  4. ↑ BS 5400-3: 2000
    Стальные, бетонные и композитные мосты. Свод правил проектирования стальных мостов. BSI

[вверх] Ресурсы

[вверху] См. Также

[вверх] Внешние ссылки

Моделирование и анализ балочных мостов

Большинство автомобильных мостов представляют собой балочные конструкции с однопролетными или непрерывными пролетами, а композитные мосты имеют форму многобалочных или лестничных настилов.Определение основных эффектов различных комбинаций нагрузок часто может быть достигнуто с помощью 2-мерной аналитической модели, но для более полного анализа необходима 3-мерная модель.
В этой статье рассматриваются соответствующие методы анализа и моделирования типичных мостов из стали и композитных материалов в Великобритании.

 

Полная конечно-элементная модель

[вверху] Варианты моделирования типичного многолучевого моста

 

Типичный многобалочный мост из стального композитного материала
Овербридж Тринити на A120
(Изображение любезно предоставлено Аткинсом)

Существует три варианта моделирования типичного многобалочного стального композитного моста:

Линейный луч — довольно грубый инструмент.Он не учитывает поперечное распределение, он не дает результатов для поперечного дизайна (например, плиты или распорки) и не учитывает эффекты перекоса. Его не рекомендуется использовать для детального проектирования, но это полезный инструмент для предварительного проектирования.

Использование ростверка подходит во многих ситуациях. Использование модели конечных элементов даст более подробные результаты, особенно для неоднородных балок.

Хотя анализ ростверка широко используется и по-прежнему считается наиболее подходящим для большинства мостовых настилов, признано, что программы анализа методом конечных элементов становятся все более доступными и более простыми в использовании.Кроме того, требования Еврокода для проверки бокового продольного изгиба при кручении могут сделать анализ продольного изгиба методом конечных элементов важным для проверки случая нагрузки мокрой бетонной конструкции.

 

Поперечное сечение моста Тринити

[вверх] Анализ ростков

[вверх] Анализ ростков: обзор

 

Изометрический вид ростверка, представляющего собой настил балки

Модель ростверка — это обычная форма расчетной модели для композитных мостовых настилов.Его ключевые особенности:

  • Это 2D модель
  • Конструктивное поведение линейно-упругое
  • Элементы балки выложены сеткой в ​​одной плоскости, жестко соединены в узлах
  • Продольные элементы представляют собой составные секции (т. Е. Главные балки с соответствующей плитой)
  • Поперечные элементы представляют собой только плиту или составное сечение, в котором присутствуют поперечные стальные балки

[вверх] Анализ ростверка: план элемента

Предлагается следующее руководство по выбору планировки ростверка:

  • Сохраняйте размеры сетки примерно квадратными
  • Используйте четное количество шагов сетки
  • Шаг сетки не более пролета / 8
  • Кромки вдоль парапета для облегчения приложения нагрузки
  • Вставьте дополнительные стыки для мест сращивания (обычно предполагается, что это 25% пролета от опор)

Для двухпролетного моста, как показано выше, подходящая компоновка будет такой, как показано ниже.

 

Типовая схема ростверка для двухпролетного многобалочного стального композитного моста

[вверх] Анализ ростверка: поэтапное применение загрузки

Потребуются как минимум три разные модели ростверка для моделирования реакции конструкции на диапазон постоянных и переменных воздействий:

  • Модель «только из стали» : собственный вес стальных балок и вес влажного бетона во время строительства применяются к модели ростверка только из стали.Продольные элементы представляют собой только стальные балки, в то время как поперечные элементы обычно не нужны (они могут быть установлены как «фиктивные» элементы, чтобы сохранить то же расположение модели, что и составные модели).
  • «Долговременная» композитная модель : Постоянные воздействия, прикладываемые к завершенной конструкции (в основном, наложенные постоянные нагрузки, такие как покрытие поверхности, и ограничение кривизны из-за усадки), применяются к долговременной композитной модели. Характеристики сечения продольных составных элементов и поперечных элементов, представляющих плиту, рассчитываются с использованием длительного модуля упругости бетона.Если плита находится в состоянии растяжения, могут потребоваться свойства сечения с трещинами.
  • «Кратковременная» составная модель : Переходные воздействия (в основном вертикальные нагрузки, вызванные движением транспорта) применяются к краткосрочной составной модели. Свойства сечения рассчитываются так же, как и для долгосрочной модели, но с использованием краткосрочного модуля упругости. Опять же, свойства сечения с трещинами могут потребоваться там, где плита находится в состоянии растяжения.

Обратите внимание, что BS EN 1992-1-1 [1] дает несколько иной долгосрочный модуль упругости бетона при усадочной нагрузке, поэтому теоретически должна быть четвертая модель для анализа эффектов усадки.Однако модуль существенно не отличается от «обычного» долгосрочного значения, и разумно применить удерживающие моменты усадки к долгосрочной модели для определения вторичных моментов в балках. Однако соответствующие свойства сечения для усадки следует использовать для расчета напряжений, вызванных этими эффектами.

[вверх] Анализ ростков: свойства сечения

 

Свойства трансформируемого сечения элемента составной балки ростверка

Обычно все свойства сечения в «стальных элементах» рассчитываются с использованием преобразованной площади бетонного фланца (разделить на коэффициент модульности n = E s / E c ).Следующие свойства сечения необходимы для каждого отдельного сечения:

  • Только сталь: только свойства стальной балки
  • Долговечный композит: бетонная поверхность, преобразованная для долговременного модульного соотношения
  • Краткосрочный композит: бетонная поверхность, преобразованная для кратковременного модульного соотношения
  • Свойства с трещинами (в областях забивания): площадь армирования принимается как эффективная только в сечении плиты.

Для свойств сечения без трещин армирование в плите может игнорироваться.

Типичный преобразованный разрез показан справа.

[вверх] Степень растрескивания

Если отношение длин соседних пролетов составляет не менее 0,6, поправка на растрескивание плиты в зонах коробления может быть сделана путем использования свойств сечения с трещинами для 15% пролета с каждой стороны промежуточных опор, как показано ниже. Это предусмотрено BS EN 1994-2 [2] , пункт 5.4.2.3.

 

Степень трещиностойкости элементов балки

[вверх] Задержка сдвига в бетонных полках

Эффективная ширина бетонных полок основана на ширине плиты, равной L e /8 за пределами внешней стойки, по обе стороны от балки, где L e — это расстояние между точками обратного прогиба.Это определение дано в BS EN 1994-2 [2] , пункт 5.4.1.2, где приведены приблизительные значения L e . Обратите внимание, что запаздывание сдвига необходимо учитывать как при ULS, так и при SLS (одинаковая эффективная ширина используется для обоих предельных состояний).

[вверх] Анализ ростверка: приложение нагрузок

Остаточные воздействия (собственный вес) распределяются между продольными стержнями с помощью простой статики. Графическое изображение типичных постоянных нагрузок, приложенных к модели ростверка, показано ниже (слева).

Загрузка трафика обычно определяется с помощью программ «автозагрузки», которые являются частью большинства аналитических программ. Эти программы используют поверхности влияния для определения степени равномерно распределенных нагрузок и положения тандемных систем и специальных транспортных средств. Типичная поверхность влияния для места изгиба в середине пролета показана ниже (справа).

Пользователь решает, какие положения на модели наиболее важны для проектирования (например, промежуточные участки, стыки и положения опор), и требует, чтобы для этих положений были созданы поверхности влияния; затем автопогрузчик определяет позиции, в которых
применяется для наиболее обременительного эффекта.

  • Графическое изображение постоянных нагрузок, приложенных к модели

  • Типичная поверхность воздействия изгибающего момента в середине пролета двухпролетного четырехбалочного моста

[вверх] Анализ ростков: выход

Основная цель любого глобального анализа мостов — получение результатов, которые затем можно использовать при анализе и проектировании сечений. Обычно на выходе будут изгибающие моменты, поперечные силы и крутящие моменты (если они значительны) в главных балках.Прогибы также потребуются для расчетов из преамбула. Результат, вероятно, будет либо графическим, либо табличным, оба полезны. Графический вывод позволяет быстро установить на глаз пиковые моменты и сдвиги, а также позволяет проектировщику визуально проверить, ведет ли модель себя так, как ожидалось. Табличный вывод может быть полезен для постобработки в виде электронной таблицы и одновременного чтения сопутствующих эффектов нагрузки. Однако проектировщику следует принимать решения о том, где находятся критические места в конструкции, чтобы избежать чрезмерного количества выходных данных и постобработки.

  • Типовое графическое представление вывода изгибающего момента

  • Типичный результат анализа влияния нагрузки на ростверк

[вверх] Анализ ростков: прочие соображения

 

Графический вывод изгибающих моментов в элементах плиты ростверка модели

Также необходимо учитывать следующее:

  • Глобальные эффекты для конструкции поперечной плиты : возьмите эффекты нагрузки на поперечные элементы из модели ростверка и добавьте к эффектам из локального анализа (например,грамм. Диаграммы Пучера. См. SCI 356). Любые нагрузки, приложенные к ростверку, следует прикладывать к швам только для этой цели, чтобы избежать неточного двойного учета местных эффектов.
  • Распорка : Распорка обычно моделируется с помощью гибкого на сдвиг элемента (консервативно для использования элемента, который не допускает гибкости при сдвиге) с эквивалентными свойствами, рассчитанными на основе модели плоского каркаса. Модель плоской рамы также может использоваться для расчета распорок с использованием отклонений от модели ростверка, приложенных к модели плоской рамы, и при необходимости удерживающих сил.
  • Опоры : Все опоры обеспечивают только вертикальное ограничение в 2D ростверке. Влияние невертикальных нагрузок необходимо оценивать вручную или с помощью альтернативной модели.
  • Ручные проверки : Ручные проверки должны проводиться для проверки модели, например, проверка изгибающих моментов при равномерной нагрузке и проверка опорных реакций
  • Комбинированное программное обеспечение для глобального анализа и проектирования сечений : Некоторое программное обеспечение предлагает комбинированный общий анализ и возможность проектирования сечений.Проектировщики должны убедиться, что они понимают теорию, лежащую в основе проектирования секций балки, и проводить проверки на выходе.
 

Плоская модель каркаса для оценки жесткости (для элемента модели ростверка) и для определения эффектов от смещений из выходного

[вверх] Анализ ростков: варианты

[вверх] Мосты косые

Многие мосты имеют перекос в плане, и модель ростверка может приспособиться к этому расположению одним из нескольких способов.Рассмотрим типичный план косого моста, показанный ниже.

 

Для малых углов перекоса сетку можно выровнять с перекосом, как показано ниже.

 

перекос сетки (перекос не более 20 °)

Для больших углов перекоса поведение элементов перекоса становится неточным, и лучше вернуться к ортогональной сетке.На концах необходимо компенсировать перекос.

 

Ортогональная сетка для большего перекоса. (наклон более 20 °)

[вверх] Изогнутые мосты
 

Типовой изогнутый композитный мост

Это относительно обычное явление для мостов на развязках с разнесенными уровнями и в других местах, где пространство ограничено, чтобы иметь значительную кривизну в плане.

В таких ситуациях могут использоваться изогнутые ростверки, хотя при выборе компоновки и рассмотрении результатов анализа необходимо соблюдать осторожность, поскольку крутильные эффекты в плите нелегко отделить от эффектов коробления в стальных балках. Кроме того, влияние горизонтальных «радиальных» сил в стальных фланцах необходимо будет добавить после анализа ростверка.

 

Модель изогнутого ростверка для 4-пролетного моста

[вверх] Балки переменной глубины

Балки переменной глубины, такие как показанные ниже, можно легко разместить в модели ростверка путем изменения свойств сечения по длине продольных элементов.

 

Балки переменной глубины в двухпролетном мосту
(Изображение любезно предоставлено Аткинсом)

[вверху] Лестничные настилы
 

Лестничный мостик (этап строительства, со спусковой головкой)

Лестничные настилы, подобные показанному справа, можно смоделировать с помощью ростверков.

В модели ростверка для лестничной площадки:

  • Основные лонжероны представляют собой сплошное составное сечение
  • Промежуточные лонжероны представляют собой только плиту
  • Поперечные элементы обычно представляют собой составное сечение, включая поперечные балки.Иногда могут быть включены только промежуточные элементы плиты между композитными поперечными элементами.

Вероятно, потребуется 3D-модель для моделирования взаимодействия между поперечными балками и главными балками, в частности, для определения жесткости U-образной рамы и воздействия на поперечные балки из-за местного применения специальных транспортных средств.

 
 

Трехмерная модель лестничного настила для взаимодействия поперечных балок и главных балок

[вверх] Мосты интегральные

Для интегрального моста можно использовать двухмерный ростверк с вращающимися пружинными опорами на встроенных опорах в сочетании с двухмерной моделью плоской рамы для температурных воздействий.В качестве альтернативы можно использовать 3D-модель с участком ростверка для настила и вертикальными участками для примыкания и фундамента.

[вверху] Расчет критического изгиба на упругость для грузовой платформы «мокрый бетон»

 

Голые стальные балки в ожидании загрузки мокрого бетона

BS EN 1993-2 [3] не дает формулы для определения гибкости при продольном изгибе при кручении парных стальных балок с торсионным креплением, когда пара балок подвержена изгибу как пара в согласии друг с другом, а не между ограничениями. .Это обычный сценарий для мокрой загрузки бетона. Можно рассмотреть два варианта:

  • Расчет гибкости с использованием анализа критического продольного изгиба на упругость КЭ
  • Используйте упрощенные правила для гибкости ограничений на кручение, взятые из BS 5400-3 [4] (они доступны в формате Еврокода в SCI P356).

Для анализа КЭ пользователю необходимо просмотреть режимы продольного изгиба, чтобы найти режим продольного изгиба при кручении — можно обнаружить, что режимы продольного изгиба стенки или полки возникают раньше, чем поперечные изгибы при кручении.

КЭ-анализ, вероятно, даст значительные преимущества по сравнению с упрощенным подходом, который обсуждается при проектировании балки.

Дальнейшие инструкции по определению сопротивления продольному изгибу балок из стальных листов в композитных мостах во время строительства (голая стальная ступень) и в эксплуатации (когда плита настила действует как верхний фланец) доступны в ED008.

[вверх] Конечно-элементное моделирование

Поскольку вполне вероятно, что для проверки упругой критической потери устойчивости потребуется модель конечных элементов, можно рассмотреть возможность использования полной модели конечных элементов для всего анализа.Это также будет иметь то преимущество, что структурный отклик потенциально лучше моделируется. Однако есть ряд недостатков, в том числе:

 

Полная конечно-элементная модель

  • Более длительная установка
  • Больше шансов на ошибку
  • Больше времени для извлечения результатов
  • Для уверенного использования требуется больше практики
  • Отладка сложнее
  • Пиковые опорные моменты могут быть недооценены

Если принято решение об использовании конечно-элементной модели, могут помочь следующие рекомендации:

  • Грубая сетка, вероятно, будет достаточной
  • Держите сетку как можно более квадратной
  • Требуется более тщательное планирование
  • Толстые элементы оболочки для балок и плит, балочные элементы в других местах (например,грамм. для распорки)
  • В качестве альтернативы можно использовать балочные элементы для составных пластин для стальных балок
  • Требуется дополнительная проверка
  • Необходимые анизотропные свойства в областях с трещинами

[вверх] Выводы

Ростверк — это обычно используемая модель для настилов мостов, и она относительно проста в использовании. Тем не менее, модель конечных элементов, скорее всего, по-прежнему потребуется для анализа упругого критического продольного изгиба стальных балок, поддерживающих влажную нагрузку бетона.Следовательно, модель конечных элементов может быть рассмотрена для всего анализа, что также будет иметь возможное преимущество в виде лучшего моделирования отклика конструкции. Однако у этого подхода есть некоторые недостатки, поэтому многие проектировщики используют ростверк для основного анализа и используют модель конечных элементов только там, где это абсолютно необходимо.

[вверх] Список литературы

  1. ↑ BS EN 1992-1-1: 2004 + A1: 2014 Еврокод 2. Проектирование бетонных конструкций. Общие правила и правила для зданий, BSI
  2. 2.0 2,1 BS EN 1994-2: 2005, Еврокод 4. Проектирование композитных стальных и бетонных конструкций. Общие правила и правила для мостов, BSI
  3. ↑ BS EN 1993-2: 2006, Еврокод 3. Проектирование стальных конструкций. Стальные мосты, BSI
  4. ↑ BS 5400-3: 2000
    Стальные, бетонные и композитные мосты. Свод правил проектирования стальных мостов. BSI

[вверх] Ресурсы

[вверху] См. Также

[вверх] Внешние ссылки

Моделирование и анализ балочных мостов

Большинство автомобильных мостов представляют собой балочные конструкции с однопролетными или непрерывными пролетами, а композитные мосты имеют форму многобалочных или лестничных настилов.Определение основных эффектов различных комбинаций нагрузок часто может быть достигнуто с помощью 2-мерной аналитической модели, но для более полного анализа необходима 3-мерная модель.
В этой статье рассматриваются соответствующие методы анализа и моделирования типичных мостов из стали и композитных материалов в Великобритании.

 

Полная конечно-элементная модель

[вверху] Варианты моделирования типичного многолучевого моста

 

Типичный многобалочный мост из стального композитного материала
Овербридж Тринити на A120
(Изображение любезно предоставлено Аткинсом)

Существует три варианта моделирования типичного многобалочного стального композитного моста:

Линейный луч — довольно грубый инструмент.Он не учитывает поперечное распределение, он не дает результатов для поперечного дизайна (например, плиты или распорки) и не учитывает эффекты перекоса. Его не рекомендуется использовать для детального проектирования, но это полезный инструмент для предварительного проектирования.

Использование ростверка подходит во многих ситуациях. Использование модели конечных элементов даст более подробные результаты, особенно для неоднородных балок.

Хотя анализ ростверка широко используется и по-прежнему считается наиболее подходящим для большинства мостовых настилов, признано, что программы анализа методом конечных элементов становятся все более доступными и более простыми в использовании.Кроме того, требования Еврокода для проверки бокового продольного изгиба при кручении могут сделать анализ продольного изгиба методом конечных элементов важным для проверки случая нагрузки мокрой бетонной конструкции.

 

Поперечное сечение моста Тринити

[вверх] Анализ ростков

[вверх] Анализ ростков: обзор

 

Изометрический вид ростверка, представляющего собой настил балки

Модель ростверка — это обычная форма расчетной модели для композитных мостовых настилов.Его ключевые особенности:

  • Это 2D модель
  • Конструктивное поведение линейно-упругое
  • Элементы балки выложены сеткой в ​​одной плоскости, жестко соединены в узлах
  • Продольные элементы представляют собой составные секции (т. Е. Главные балки с соответствующей плитой)
  • Поперечные элементы представляют собой только плиту или составное сечение, в котором присутствуют поперечные стальные балки

[вверх] Анализ ростверка: план элемента

Предлагается следующее руководство по выбору планировки ростверка:

  • Сохраняйте размеры сетки примерно квадратными
  • Используйте четное количество шагов сетки
  • Шаг сетки не более пролета / 8
  • Кромки вдоль парапета для облегчения приложения нагрузки
  • Вставьте дополнительные стыки для мест сращивания (обычно предполагается, что это 25% пролета от опор)

Для двухпролетного моста, как показано выше, подходящая компоновка будет такой, как показано ниже.

 

Типовая схема ростверка для двухпролетного многобалочного стального композитного моста

[вверх] Анализ ростверка: поэтапное применение загрузки

Потребуются как минимум три разные модели ростверка для моделирования реакции конструкции на диапазон постоянных и переменных воздействий:

  • Модель «только из стали» : собственный вес стальных балок и вес влажного бетона во время строительства применяются к модели ростверка только из стали.Продольные элементы представляют собой только стальные балки, в то время как поперечные элементы обычно не нужны (они могут быть установлены как «фиктивные» элементы, чтобы сохранить то же расположение модели, что и составные модели).
  • «Долговременная» композитная модель : Постоянные воздействия, прикладываемые к завершенной конструкции (в основном, наложенные постоянные нагрузки, такие как покрытие поверхности, и ограничение кривизны из-за усадки), применяются к долговременной композитной модели. Характеристики сечения продольных составных элементов и поперечных элементов, представляющих плиту, рассчитываются с использованием длительного модуля упругости бетона.Если плита находится в состоянии растяжения, могут потребоваться свойства сечения с трещинами.
  • «Кратковременная» составная модель : Переходные воздействия (в основном вертикальные нагрузки, вызванные движением транспорта) применяются к краткосрочной составной модели. Свойства сечения рассчитываются так же, как и для долгосрочной модели, но с использованием краткосрочного модуля упругости. Опять же, свойства сечения с трещинами могут потребоваться там, где плита находится в состоянии растяжения.

Обратите внимание, что BS EN 1992-1-1 [1] дает несколько иной долгосрочный модуль упругости бетона при усадочной нагрузке, поэтому теоретически должна быть четвертая модель для анализа эффектов усадки.Однако модуль существенно не отличается от «обычного» долгосрочного значения, и разумно применить удерживающие моменты усадки к долгосрочной модели для определения вторичных моментов в балках. Однако соответствующие свойства сечения для усадки следует использовать для расчета напряжений, вызванных этими эффектами.

[вверх] Анализ ростков: свойства сечения

 

Свойства трансформируемого сечения элемента составной балки ростверка

Обычно все свойства сечения в «стальных элементах» рассчитываются с использованием преобразованной площади бетонного фланца (разделить на коэффициент модульности n = E s / E c ).Следующие свойства сечения необходимы для каждого отдельного сечения:

  • Только сталь: только свойства стальной балки
  • Долговечный композит: бетонная поверхность, преобразованная для долговременного модульного соотношения
  • Краткосрочный композит: бетонная поверхность, преобразованная для кратковременного модульного соотношения
  • Свойства с трещинами (в областях забивания): площадь армирования принимается как эффективная только в сечении плиты.

Для свойств сечения без трещин армирование в плите может игнорироваться.

Типичный преобразованный разрез показан справа.

[вверх] Степень растрескивания

Если отношение длин соседних пролетов составляет не менее 0,6, поправка на растрескивание плиты в зонах коробления может быть сделана путем использования свойств сечения с трещинами для 15% пролета с каждой стороны промежуточных опор, как показано ниже. Это предусмотрено BS EN 1994-2 [2] , пункт 5.4.2.3.

 

Степень трещиностойкости элементов балки

[вверх] Задержка сдвига в бетонных полках

Эффективная ширина бетонных полок основана на ширине плиты, равной L e /8 за пределами внешней стойки, по обе стороны от балки, где L e — это расстояние между точками обратного прогиба.Это определение дано в BS EN 1994-2 [2] , пункт 5.4.1.2, где приведены приблизительные значения L e . Обратите внимание, что запаздывание сдвига необходимо учитывать как при ULS, так и при SLS (одинаковая эффективная ширина используется для обоих предельных состояний).

[вверх] Анализ ростверка: приложение нагрузок

Остаточные воздействия (собственный вес) распределяются между продольными стержнями с помощью простой статики. Графическое изображение типичных постоянных нагрузок, приложенных к модели ростверка, показано ниже (слева).

Загрузка трафика обычно определяется с помощью программ «автозагрузки», которые являются частью большинства аналитических программ. Эти программы используют поверхности влияния для определения степени равномерно распределенных нагрузок и положения тандемных систем и специальных транспортных средств. Типичная поверхность влияния для места изгиба в середине пролета показана ниже (справа).

Пользователь решает, какие положения на модели наиболее важны для проектирования (например, промежуточные участки, стыки и положения опор), и требует, чтобы для этих положений были созданы поверхности влияния; затем автопогрузчик определяет позиции, в которых
применяется для наиболее обременительного эффекта.

  • Графическое изображение постоянных нагрузок, приложенных к модели

  • Типичная поверхность воздействия изгибающего момента в середине пролета двухпролетного четырехбалочного моста

[вверх] Анализ ростков: выход

Основная цель любого глобального анализа мостов — получение результатов, которые затем можно использовать при анализе и проектировании сечений. Обычно на выходе будут изгибающие моменты, поперечные силы и крутящие моменты (если они значительны) в главных балках.Прогибы также потребуются для расчетов из преамбула. Результат, вероятно, будет либо графическим, либо табличным, оба полезны. Графический вывод позволяет быстро установить на глаз пиковые моменты и сдвиги, а также позволяет проектировщику визуально проверить, ведет ли модель себя так, как ожидалось. Табличный вывод может быть полезен для постобработки в виде электронной таблицы и одновременного чтения сопутствующих эффектов нагрузки. Однако проектировщику следует принимать решения о том, где находятся критические места в конструкции, чтобы избежать чрезмерного количества выходных данных и постобработки.

  • Типовое графическое представление вывода изгибающего момента

  • Типичный результат анализа влияния нагрузки на ростверк

[вверх] Анализ ростков: прочие соображения

 

Графический вывод изгибающих моментов в элементах плиты ростверка модели

Также необходимо учитывать следующее:

  • Глобальные эффекты для конструкции поперечной плиты : возьмите эффекты нагрузки на поперечные элементы из модели ростверка и добавьте к эффектам из локального анализа (например,грамм. Диаграммы Пучера. См. SCI 356). Любые нагрузки, приложенные к ростверку, следует прикладывать к швам только для этой цели, чтобы избежать неточного двойного учета местных эффектов.
  • Распорка : Распорка обычно моделируется с помощью гибкого на сдвиг элемента (консервативно для использования элемента, который не допускает гибкости при сдвиге) с эквивалентными свойствами, рассчитанными на основе модели плоского каркаса. Модель плоской рамы также может использоваться для расчета распорок с использованием отклонений от модели ростверка, приложенных к модели плоской рамы, и при необходимости удерживающих сил.
  • Опоры : Все опоры обеспечивают только вертикальное ограничение в 2D ростверке. Влияние невертикальных нагрузок необходимо оценивать вручную или с помощью альтернативной модели.
  • Ручные проверки : Ручные проверки должны проводиться для проверки модели, например, проверка изгибающих моментов при равномерной нагрузке и проверка опорных реакций
  • Комбинированное программное обеспечение для глобального анализа и проектирования сечений : Некоторое программное обеспечение предлагает комбинированный общий анализ и возможность проектирования сечений.Проектировщики должны убедиться, что они понимают теорию, лежащую в основе проектирования секций балки, и проводить проверки на выходе.
 

Плоская модель каркаса для оценки жесткости (для элемента модели ростверка) и для определения эффектов от смещений из выходного

[вверх] Анализ ростков: варианты

[вверх] Мосты косые

Многие мосты имеют перекос в плане, и модель ростверка может приспособиться к этому расположению одним из нескольких способов.Рассмотрим типичный план косого моста, показанный ниже.

 

Для малых углов перекоса сетку можно выровнять с перекосом, как показано ниже.

 

перекос сетки (перекос не более 20 °)

Для больших углов перекоса поведение элементов перекоса становится неточным, и лучше вернуться к ортогональной сетке.На концах необходимо компенсировать перекос.

 

Ортогональная сетка для большего перекоса. (наклон более 20 °)

[вверх] Изогнутые мосты
 

Типовой изогнутый композитный мост

Это относительно обычное явление для мостов на развязках с разнесенными уровнями и в других местах, где пространство ограничено, чтобы иметь значительную кривизну в плане.

В таких ситуациях могут использоваться изогнутые ростверки, хотя при выборе компоновки и рассмотрении результатов анализа необходимо соблюдать осторожность, поскольку крутильные эффекты в плите нелегко отделить от эффектов коробления в стальных балках. Кроме того, влияние горизонтальных «радиальных» сил в стальных фланцах необходимо будет добавить после анализа ростверка.

 

Модель изогнутого ростверка для 4-пролетного моста

[вверх] Балки переменной глубины

Балки переменной глубины, такие как показанные ниже, можно легко разместить в модели ростверка путем изменения свойств сечения по длине продольных элементов.

 

Балки переменной глубины в двухпролетном мосту
(Изображение любезно предоставлено Аткинсом)

[вверху] Лестничные настилы
 

Лестничный мостик (этап строительства, со спусковой головкой)

Лестничные настилы, подобные показанному справа, можно смоделировать с помощью ростверков.

В модели ростверка для лестничной площадки:

  • Основные лонжероны представляют собой сплошное составное сечение
  • Промежуточные лонжероны представляют собой только плиту
  • Поперечные элементы обычно представляют собой составное сечение, включая поперечные балки.Иногда могут быть включены только промежуточные элементы плиты между композитными поперечными элементами.

Вероятно, потребуется 3D-модель для моделирования взаимодействия между поперечными балками и главными балками, в частности, для определения жесткости U-образной рамы и воздействия на поперечные балки из-за местного применения специальных транспортных средств.

 
 

Трехмерная модель лестничного настила для взаимодействия поперечных балок и главных балок

[вверх] Мосты интегральные

Для интегрального моста можно использовать двухмерный ростверк с вращающимися пружинными опорами на встроенных опорах в сочетании с двухмерной моделью плоской рамы для температурных воздействий.В качестве альтернативы можно использовать 3D-модель с участком ростверка для настила и вертикальными участками для примыкания и фундамента.

[вверху] Расчет критического изгиба на упругость для грузовой платформы «мокрый бетон»

 

Голые стальные балки в ожидании загрузки мокрого бетона

BS EN 1993-2 [3] не дает формулы для определения гибкости при продольном изгибе при кручении парных стальных балок с торсионным креплением, когда пара балок подвержена изгибу как пара в согласии друг с другом, а не между ограничениями. .Это обычный сценарий для мокрой загрузки бетона. Можно рассмотреть два варианта:

  • Расчет гибкости с использованием анализа критического продольного изгиба на упругость КЭ
  • Используйте упрощенные правила для гибкости ограничений на кручение, взятые из BS 5400-3 [4] (они доступны в формате Еврокода в SCI P356).

Для анализа КЭ пользователю необходимо просмотреть режимы продольного изгиба, чтобы найти режим продольного изгиба при кручении — можно обнаружить, что режимы продольного изгиба стенки или полки возникают раньше, чем поперечные изгибы при кручении.

КЭ-анализ, вероятно, даст значительные преимущества по сравнению с упрощенным подходом, который обсуждается при проектировании балки.

Дальнейшие инструкции по определению сопротивления продольному изгибу балок из стальных листов в композитных мостах во время строительства (голая стальная ступень) и в эксплуатации (когда плита настила действует как верхний фланец) доступны в ED008.

[вверх] Конечно-элементное моделирование

Поскольку вполне вероятно, что для проверки упругой критической потери устойчивости потребуется модель конечных элементов, можно рассмотреть возможность использования полной модели конечных элементов для всего анализа.Это также будет иметь то преимущество, что структурный отклик потенциально лучше моделируется. Однако есть ряд недостатков, в том числе:

 

Полная конечно-элементная модель

  • Более длительная установка
  • Больше шансов на ошибку
  • Больше времени для извлечения результатов
  • Для уверенного использования требуется больше практики
  • Отладка сложнее
  • Пиковые опорные моменты могут быть недооценены

Если принято решение об использовании конечно-элементной модели, могут помочь следующие рекомендации:

  • Грубая сетка, вероятно, будет достаточной
  • Держите сетку как можно более квадратной
  • Требуется более тщательное планирование
  • Толстые элементы оболочки для балок и плит, балочные элементы в других местах (например,грамм. для распорки)
  • В качестве альтернативы можно использовать балочные элементы для составных пластин для стальных балок
  • Требуется дополнительная проверка
  • Необходимые анизотропные свойства в областях с трещинами

[вверх] Выводы

Ростверк — это обычно используемая модель для настилов мостов, и она относительно проста в использовании. Тем не менее, модель конечных элементов, скорее всего, по-прежнему потребуется для анализа упругого критического продольного изгиба стальных балок, поддерживающих влажную нагрузку бетона.Следовательно, модель конечных элементов может быть рассмотрена для всего анализа, что также будет иметь возможное преимущество в виде лучшего моделирования отклика конструкции. Однако у этого подхода есть некоторые недостатки, поэтому многие проектировщики используют ростверк для основного анализа и используют модель конечных элементов только там, где это абсолютно необходимо.

[вверх] Список литературы

  1. ↑ BS EN 1992-1-1: 2004 + A1: 2014 Еврокод 2. Проектирование бетонных конструкций. Общие правила и правила для зданий, BSI
  2. 2.0 2,1 BS EN 1994-2: 2005, Еврокод 4. Проектирование композитных стальных и бетонных конструкций. Общие правила и правила для мостов, BSI
  3. ↑ BS EN 1993-2: 2006, Еврокод 3. Проектирование стальных конструкций. Стальные мосты, BSI
  4. ↑ BS 5400-3: 2000
    Стальные, бетонные и композитные мосты. Свод правил проектирования стальных мостов. BSI

[вверх] Ресурсы

[вверху] См. Также

[вверх] Внешние ссылки

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *